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Abstract

Most attempts on extending Graph Neural Net-
works (GNNs) to Heterogeneous Information Net-
works (HINs) implicitly take the direct assump-
tion that the multiple homogeneous attributed net-
works induced by different meta-paths are com-
plementary. The doubts about the hypothesis of
complementary motivate an alternative assumption
of consensus. That is, the aggregated node at-
tributes shared by multiple homogeneous attributed
networks are essential for node representations,
while the specific ones in each homogeneous at-
tributed network should be discarded. In this pa-
per, a novel Heterogeneous Graph Information Bot-
tleneck (HGIB) is proposed to implement the con-
sensus hypothesis in an unsupervised manner. To
this end, information bottleneck (IB) is extended
to unsupervised representation learning by leverag-
ing self-supervision strategy. Specifically, HGIB
simultaneously maximizes the mutual information
between one homogeneous network and the repre-
sentation learned from another homogeneous net-
work, while minimizes the mutual information be-
tween the specific information contained in one ho-
mogeneous network and the representation learned
from this homogeneous network. Model analysis
reveals that the two extreme cases of HGIB corre-
spond to the supervised heterogeneous GNN and
the infomax on homogeneous graph, respectively.
Extensive experiments on real datasets demonstrate
that the consensus-based unsupervised HGIB sig-
nificantly outperforms most semi-supervised SOTA
methods based on complementary assumption.

1 Introduction
Heterogeneous Information Networks (HINs) possess the ad-
vantage of modeling rich relations in real work compared to
homogeneous networks, which have been well studied by the
researchers from mathematics, physics and computer science
[Shi et al., 2017; Wang et al., 2020]. Thus, by effectively
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exploiting these multiple relations via meta-paths, HINs pro-
vide more clues for accurate network analysis, e.g. network
embedding [Dong et al., 2017], and have been successfully
applied to recommendation system [Shi et al., 2019], natural
language processing [Hu et al., 2019] and knowledge graph.

Graph neural networks (GNNs) [Wu et al., 2021], espe-
cially graph convolutional neural networks (GCNNs) [Kipf
and Welling, 2017; Bruna et al., 2014], have became a pow-
erful tool for homogeneous attributed network embedding.
And, their success can be attributed to the Laplacian smooth-
ing [Li et al., 2018] from spatial perspective or the low-pass
filtering [Wu et al., 2019] from spectral perspective.

Recent attempts extend GNNs to heterogeneous informa-
tion networks [Wang et al., 2019; Fu et al., 2020; Yun
et al., 2019; Hu et al., 2020]. Most of them follow the
pipeline of transforming a heterogeneous attributed network
with multiple relations into multiple attributed homogeneous
networks via meta-paths and combining the embedding re-
sults of multiple homogeneous attributed networks obtained
from GNNs. And, the supervision information is utilized
to learn how to map from node feature to label and how to
combine the multiple embedding results [Wang et al., 2019;
Yun et al., 2019]. These semi-supervised methods implic-
itly take the direct assumption that the multiple homoge-
neous attributed networks induced by different meta-paths are
complementary. That is, the information contained in each
homogeneous attributed network is insufficient to represent
nodes, thus, multiple homogeneous attributed networks are
necessary to complete the information.

Here, the direct assumption of complementarity is investi-
gated. The doubts about this hypothesis stem from both the
characteristic of the homogeneous attributed networks and
the nature of the adopted GNNs. First, the homogeneous at-
tributed networks induced by meta-paths are not independent.
In fact, they share the common node attributes (feature) and
possess different network topologies. Second, the essence
of GNNs, which are applied to each homogeneous attributed
network, is the attributes smoothing according to the topol-
ogy, i.e., discarding noises. Based on these two characteris-
tics, the same attributes are smoothed according to the dif-
ferent topologies of multiple homogeneous networks. Thus,
the smoothed node attributes in each homogeneous attributed
network may not be significantly different.

Therefore, contrary to hypothesis of complementarity, an-
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other alternative assumption may be the consensus, where
the aggregated node attributes shared by multiple homoge-
neous attributed networks are essential for node represen-
tations. In other words, to seek robust node representation,
the aggregated node attributes, which are specific in each ho-
mogeneous attributed network, should be discarded. This
assumption shares the common philosophy with consensus
clustering. Note that this alternative assumption reduces the
requirement for labels, thus is more suitable for unsupervised
tasks.

In this paper, a novel Heterogeneous Graph Information
Bottleneck (HGIB) is proposed to implement the consensus
hypothesis in an unsupervised manner. To this end, informa-
tion bottleneck (IB), which has been widely used in super-
vised tasks, is extended to unsupervised representation learn-
ing by leveraging self-supervision strategy. That is, each in-
duced homogeneous attributed network is utilized as the self-
supervision information for the representation learning task
on other induced homogeneous attributed networks. Specif-
ically, HGIB simultaneously maximizes the mutual informa-
tion between the representation learned from one homoge-
neous network and another homogeneous network, and min-
imizes the mutual information between the specific informa-
tion contained in one homogeneous network and the rep-
resentation learned from this homogeneous network. The
model analysis reveals that HGIB degrades to the supervised
heterogeneous GNN or the infomax on homogeneous graph,
respectively, if the two adopted meta-paths are extremely sim-
ilar or dissimilar.

The main contributions are summarized as follows.

• We investigate the widely-adopted complementary as-
sumption in designing GNNs for HINs, and present
an alternative one, i.e., consensus hypothesis, which is
more suitable for unsupervised tasks.

• We propose a well-behavior Heterogeneous Graph
Information Bottleneck (HGIB) by leveraging self-
supervised learning strategy, which facilitates the adop-
tion of information bottleneck for unsupervised tasks.

• We reveal that the two extreme cases of HGIB corre-
spond to the supervised heterogeneous GNN and the in-
fomax on homogeneous graph, respectively.

• Extensive experiments demonstrate that the consensus-
based unsupervised HGIB significantly outperforms
most semi-supervised SOTA methods based on comple-
mentary assumption.

2 Preliminaries
2.1 Heterogeneous Information Network
A heterogeneous information network (HIN) [Sun and Han,
2012], denoted as G = (V, E , φ, ϕ), consists of a node
set V and a link set E associating with a node type map-
ping function φ : V 7→ T and link type mapping func-
tion ϕ : E 7→ R, respectively. In the network, each object
v ∈ V belongs to one specific object type φ(v) ∈ T and
each link e ∈ E belongs to a specific relation ϕ(e) ∈ R,
where |T | + |R| > 2. A meta-path P of length l is denoted

in the form of T1
R1−−→ T2

R2−−→ ...
Rl−→ Tl+1, which defines

a composite relation R = R1 ◦ R2 ◦ ... ◦ Rl between types
T1 and Tl+1 with ◦ standing for the composition operator on
relations.

2.2 Information Bottleneck
To investigate the discriminative ability of the representation,
the amount of label information that remains accessible af-
ter encoding the data, is known as sufficiency [Achille and
Soatto, 2018]. A representation h of data x is sufficient for
the label y if and only if I(x; y|h) = 0. That is, the amount
of information regarding the task is unchanged by the encod-
ing procedure, i.e.

I(x; y) = I(h; y). (1)

where I(·; ·) stands for the mutual information. To make the
representation robustness (generalization), Information Bot-
tleneck principle (IB) [Tishby et al., 2000] attempts to dis-
card all information from the input, which is not helpful for
a given task. To this end, IB [Alemi et al., 2017] directly
minimizes the mutual information between the data x and its
representation h, I(x; h), while at the same time maximizes
the mutual information between h and the label y, I(y; h).
Its objective function can be formulated as follows

RIB(θ) = Iθ(y; h)− βIθ(x; h). (2)

where θ denotes the parameters of the representation encoder
pθ(h|x) and β controls the tradeoff. The second term I(x; h)
can be subdivided into two components by using the chain
rule of mutual information as

I(x; h) = I(x; h|y) + I(y; h), (3)

where the second term I(y; h) is independent of the repre-
sentation h, since h is sufficient for y as shown in Eq. (1).
The first term I(x; h|y) represents the information in h that is
not predictive of y, i.e. superfluous information. Therefore,
minimizing the mutual information I(x; h) is equivalent to
minimizing the superfluous information I(x; h|y) [Federici
et al., 2020], and the objective of IB in Eq. (4) can be refor-
mulated as

RIB(θ) = I(y; h)− βI(x; h|y). (4)

Note that maximizing the IB can be done directly only in su-
pervised settings, i.e. y is given.

3 Heterogeneous Graph Information
Bottleneck

In this section, Heterogeneous Graph Information Bottleneck
(HGIB) is proposed. First, the assumption and the overview
are provided by transforming the unsupervised heterogeneous
graph neural network as a self-supervised task. Then, the for-
mula of the self-supervised information bottleneck is intro-
duced based on the supervised one in Sec 2.2. Finally, the
objective function and the optimization are elaborated.
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Figure 1: The illustration of the proposed Heterogeneous Graph Information Bottleneck (HGIB) and its objective function.

3.1 Assumption and Overview
There may exist multiple relations between each pair of
nodes, which are induced by different meta-paths, in hetero-
geneous. Taking ACM as an example, each pair of papers can
be connected by the same author or same subject. Contrary to
the complementary assumption taken by most existing GNNs
for heterogeneous, another alternative assumption, i.e., con-
sensus, is investigated here. Consensus assumption considers
that the learned node representations shared by multiple sub-
graphs are essential for node representations. In other words,
to seek robust node representation, the node representations,
which are specific in each sub-graph, should be discarded.

To implement the consensus assumption, the Heteroge-
neous Graph Information Bottleneck (HGIB) is proposed. Its
illustration is shown in Fig. 1. In the heterogeneous graph,
circle, square and triangle denote three kinds of nodes, while
solid, dashed and dotted lines stand for three kinds of edges.
First, the heterogeneous graph G = (V, E , φ, ϕ) is decom-
posed into two sub-graphs G(1) =

(
V̄, E(1)

)
(upper graph)

and G(2) =
(
V̄, E(2)

)
(lower graph) according to the meta-

paths “circle-square-circle” and “circle-triangle-circle”, re-
spectively, where V̄ represents the set of nodes with the type
of circle. The adjacency matrices of these two sub-graphs
are denoted as A(1) and A(2). The attributes of the nodes of
circle type are collected in matrix X, and x is employed to
represent the original attributes of one node.

Here, the widely-adopted GCN [Kipf and Welling, 2017]
is adopted as the encoders to obtain the node representations
on two sub-graphs, as shown in the four gray boxes in Fig.
1, where the light gray boxes and dark gray boxes represent
the propagations without learnable parameter and trainable
mapping functions, respectively. The formula is as follows

H(1) = p(H(1)|V(1)) = σ
(
V(1)Θ(1)

)
= σ

((
D̃(1)

)− 1
2

Ã(1)
(
D̃(1)

)− 1
2

XΘ(1)

)
,

H(2) = p(H(2)|V(2)) = σ
(
V(2)Θ(2)

)
= σ

((
D̃(2)

)− 1
2

Ã(2)
(
D̃(2)

)− 1
2

XΘ(2)

)
,

where Ã = A + I stands for the adjacency matrix with self-

loop, D̃ denotes the degree matrix of Ã with the diagonal
elements as the degrees of the nodes, V = D̃− 1

2 ÃD̃− 1
2 X

stands for the representations after propagation but without
learnable parameters, and Θ represents the learnable param-
eters (The matrices with superscripts ·(1) and ·(2) correspond
to sub-graph G(1) and G(2), respectively). Besides, v and h,
which are the rows of V and H, respectively, are used to
represent the attributes after propagation and final represen-
tation corresponding to one node, respectively. σ(·) denotes
the nonlinear mapping function, such as ReLU or softmax.

According to the consensus assumption mentioned above,
both v(1) (light orange box) and v(2) (light green box) share
some common and inherent characteristics (yellow part) and
possess specific characteristics (dark orange and dark green
components), as shown in Fig. 1. Thus, we would like to
learn the representation h(1) (or h(2)) from v(1) (or v(2))
that discards as much information as possible without los-
ing any label information. In the next subsection, the IB for
supervised task provided in Sec. 2.2 will be extended to self-
supervised one for discarding as much specific information as
possible in the heterogeneous graph information bottleneck.

3.2 Self-supervised Information Bottleneck
In this section, the assumption and overview will be formu-
lated by extending semi-supervised IB to self-supervised one.
First, the consensus assumption can be formalized as the re-
dundancy: v(1) is redundant with respect to v(2) for y if and
only if I(y; v(1)|v(2)) = 0. Whenever v(1) and v(2) are mu-
tually redundant, any representation which contains all the
information shared by both is as predictive as their joint ob-
servation.

Second, heterogeneous graph information bottleneck
(HGIB) is formalized via self-supervised information bot-
tleneck (SSIB). SSIB extends IB by considering the mutual
redundancy assumption. Note that HGIB aims at exploring
shared information by discarding as much specific informa-
tion as possible. The IB formula in Eq. (4) can be extend to

RSSIB(θ) = Iθ(v
(2); h(1))− βIθ(v(1); h(1)). (5)

where the first term I(v(2); h(1)) maximizes the shared in-
formation between the learned representation h(1) from sub-
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graph G(1) and v(2) from sub-graph G(2), while the second
term I(v(1); h(1)) minimizes the information in h(1)) from
data v(1). Similar to the decomposition in Eq. (3), by em-
ploying the redundancy assumption, the second term in SSIB
(Eq. (5)) can be decomposed into

I(v(1); h(1)) = I(v(1); h(1)|v(2)) + I(v(2); h(1)). (6)

Since I(v(2); h(1)) needs to be maximal to maximizeRSSIB
in Eq. (5), to minimize I(v(1); h(1)), the first term in Eq. (6),
i.e., I(v(1); h(1)|v(2)), which represents the information in
h(1) from the specific information of v(1), should be mini-
mized. Thus, the RSSIB in Eq. (5) can be rewritten as

R
(1)
SSIB(Θ(1)) = IΘ(1)(v

(2); h(1))− β1IΘ(1)(v
(1); h(1)|v(2)),

(7)
where Θ(1) denotes the parameter of the GCN applied on

sub-graph G(1). Note that, in Fig. 1, the first term is illus-
trated as the oblique line between v(2) and h(1), while the
second term as the horizontal line between h(1) and the spe-
cific part in v(1). Similarly, the counterpart of R(2)

SSIB can be
formulated as

R
(2)
SSIB(Θ(2)) = IΘ(2)(v

(1); h(2))− β2IΘ(2)(v
(2); h(2)|v(1)).

(8)
Therefore, the self-supervised information bottleneck is

formulated as jointly maximizing both R
(1)
SSIB(Θ(1)) and

R
(2)
SSIB(Θ(2)), and the two representation encoders imple-

mented via GCNs with parameters Θ(1) and Θ(2) can be ob-
tained. Furthermore, the final node representation is obtained
as h = h(1) + h(2), where the + stands for the element-wise
summation.

3.3 Objective Function and Optimization
Objective Function
As described in pervious subsection, the objective function of
HGIB can be obtained by averaging Eqs. (7) and (8) as

RSSIB(Θ(1),Θ(2)) =
1

2

(
R

(1)
SSIB +R

(2)
SSIB

)
= − β1IΘ(1)(v(1); h(1)|v(2)) + β2IΘ(2)(v(2); h(2)|v(1))

2

+
IΘ(1)(v(2); h(1)) + IΘ(2)(v(1); h(2))

2
. (9)

On one hand, by considering h(1) and h(2) on the same do-
main, the term IΘ(1)(v(1); h(1)|v(2)) can be expressed as

IΘ(1)(v
(1); h(1)|v(2))

≤ DKL(pΘ(1)(h
(1)|v(1))||pΘ(2)(h

(2)|v(2))), (10)

which provide an upper-bound. This bound is tight when
pΘ(1)(h(1)|v(1)) coincides with pΘ(2)(h(2)|v(2)), i.e., the two
GCNs provide a consistent representation encoder. The
derivation is provided in supplementary. Similarly, the coun-
terpart is

IΘ(2)(v(2); h(2)|v(1))

≤ DKL(pΘ(2)(h(2)|v(2))||pΘ(1)(h(1)|v(1))). (11)

On the other hand, IΘ(1)(v(2); h(1)) can be reformulated
as follows

IΘ(1)(v(2); h(1)) ≥ IΘ(1)Θ(2)(h(1); h(2)), (12)
where the second equality sign is because h(2) is the repre-
sentation of v(2). This bound is tight when h(2) is sufficient
for h(1), i.e., h(2) contains all the information regarding h(1).
Analogously, it holds that

IΘ(2)(v(1); h(2)) ≥ IΘ(1)Θ(2)(h(1); h(2)). (13)
Therefore, the objective function in Eq. (14) can be lower-

bounded as
RSSIB(Θ(1),Θ(2))

≥ − γDSKL(pΘ(1)(h(1)|v(1))||pΘ(2)(h(2)|v(2)))

+ IΘ(1)Θ(2)(h(1); h(2)), (14)
where DSKL(pΘ(1)(h(1)|v(1))||pΘ(2)(h(2)|v(2))) stands for
the symmetric KL divergence between pΘ(1)(h(1)|v(1)) and
pΘ(2)(h(2)|v(2)). γ is employed to control the trade-off be-
tween sufficiency and robustness of the node representation.
For clarity, this objective function is illustrated in Fig.1(b).

Optimization
First, the symmetric KL divergence
DSKL(pΘ(1)(h(1)|v(1))||pΘ(2)(h(2)|v(2))) can be di-
rectly computed by setting both pΘ(1)(h(1)|v(1)) and
pΘ(2)(h(2)|v(2)) as Gaussian distributions whose mean and
diagonal covariance matrix are obtained by feeding v (v(1)

and v(2) are for two probability distributions, respectively)
into a fully-connected layer. Second, the mutual information
IΘ(1)Θ(2)(h(1); h(2)) between the node representations h(1)

and h(2) can be maximized by using any sample-based
differentiable mutual information lower bound, such as
MINE [Belghazi et al., 2018] and inforNCE [Oord et al.,
2018]. Here, MINE is employed to estimate the MI as

ÎΘ(1)Θ(2)(h(1); h(2)) (15)

= sup
ψ

Ep(h(1),h(2))[Tψ]− log
(
Ep(h(1))p(h(2))[e

Tψ ]
)

where Tψ = Tψ(h(1),h(2)) is a function parametrized by
a deep neural network with parameters ψ, and a multi-layer
perceptron (MLP) is employed in this paper. p(h(1),h(2)) is
joint sampler, while p(h(1)) and p(h(2)) are marginal ones.

3.4 Model Analysis and Comparison
In this subsection, two extreme cases are considered to show
the connections between our proposed heterogeneous graph
information bottleneck (HGIB) and exiting methods.
Case 1. According to the decomposition in Eq. (6), the less
the v(1) and v(2) in common, the more I(v(1); h(1)|v(2))
can be reduced by seeking the representation h(1). Then, the
more I(v(1); h(1)) can be used to discard specific informa-
tion. Thus, the obtained node representation more robust. At
the extreme, if v(1) and v(2) only share label information,
the node representation h(1) is minimal for label y, and self-
supervised IB is equivalent to the supervised IB without ac-
cessing to the labels. Therefore, our proposed HGIB becomes
the supervised heterogeneous graph neural network.
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Datasets Target classes Node Edges Edge types Features Validation Training & Testing Meta-paths

ACM 3 8,994 25,922 4 1,902 300 2,725 PAP, PSP
DBLP 4 18,405 67,946 4 334 400 3,657 APA, APCPA
IMDB 3 12,772 37,288 4 1,256 300 2,639 MAM, MDM

Table 1: Statistics of the datasets

Metrics Train
Ratio

Metapa
th2vec GCN GAT DGI HDGI HAN GTN HGIB

Rand
HGIB
path1

HGIB
path2 HGIB

DBLP

Micro
F1

20% 91.35 91.71 91.96 89.75 91.75 93.11 94.18 84.82 84.38 92.20 95.09
40% 92.03 92.31 92.16 88.23 92.05 93.30 94.99 84.28 85.33 90.34 96.13
60% 92.48 92.62 91.84 90.68 91.39 93.70 95.31 84.96 84.55 91.86 96.20

Macro
F1

20% 90.16 90.79 90.97 89.21 92.26 92.24 89.92 83.64 83.19 91.60 94.76
40% 90.82 91.48 91.20 87.49 91.06 92.40 92.15 82.50 84.26 89.14 94.89
60% 91.32 91.89 90.80 88.99 90.19 92.80 93.33 83.15 83.50 91.12 94.52

ACM

Micro
F1

20% 65.00 86.77 86.01 91.04 92.27 89.22 92.68 84.95 88.94 69.45 92.92
40% 69.75 87.64 86.79 92.23 91.45 89.64 93.45 84.34 88.13 69.39 92.80
60% 71.29 88.12 87.40 92.36 91.31 89.33 91.09 85.32 88.35 68.35 91.34

Macro
F1

20% 65.09 86.81 86.23 91.04 92.32 89.40 90.44 84.93 88.96 67.70 92.75
40% 69.93 87.68 87.04 92.23 90.01 89.79 89.53 84.42 88.16 67.56 90.88
60% 71.47 88.10 87.56 92.36 90.83 89.51 89.42 85.36 88.37 65.10 91.17

IMDB

Micro
F1

20% 45.65 49.78 55.28 57.28 58.93 55.73 60.92 52.32 58.57 57.48 63.52
40% 48.24 51.71 55.91 58.16 59.94 57.97 60.96 52.96 58.21 57.41 63.28
60% 49.09 52.29 56.44 58.95 63.35 58.32 61.39 52.46 58.90 56.43 61.57

Macro
F1

20% 41.16 45.73 49.44 56.90 59.14 50.00 55.17 23.27 46.19 42.80 58.23
40% 44.22 48.01 50.64 57.23 58.09 52.71 58.51 23.08 39.58 36.94 59.65
60% 45.11 49.15 51.90 56.35 62.97 54.24 61.10 23.12 46.77 33.32 60.22

Table 2: Comparison on node classification in terms of Micro F1 and Macro F1. Bold font indicates the best result. Note that both HAN and
GTN are semi-supervised methods, while our proposed HGIB is an unsupervised one.

Case 2. In contrary, the more the v(1) and v(2) in common,
the less I(v(1); h(1)|v(2)) can be reduced by seeking the rep-
resentation h(1), then, the less I(v(1); h(1)) can be reduced to
discard specific information. Thus, the role of inducing mul-
tiple sub-graphs via different meta-paths is weakened. At the
extreme, if v(1) and v(2) are identical, then the HGIB degen-
erates to the mutual information maximization principle in
InfoMax [Hjelm et al., 2019] and mutual information maxi-
mization based on Noise-Contrastive Estimation [Oord et al.,
2018] on homogeneous graph, i.e., maximizing I(x; h), such
as in Graphical Mutual Informax (GMI) [Peng et al., 2020].

Information theory based GNNs. Since the MINE [Belg-
hazi et al., 2018] and infoNCE [Oord et al., 2018] were pro-
posed, mutual information and contrastive learning are em-
ployed for self-supervised representation learning, such as
infomax [Hjelm et al., 2019]. Then, Deep Graph Informax
(DGI) [Velickovic et al., 2019] and InfoGraph [Sun et al.,
2020] are proposed for node and graph classification by ap-
plying MINE and infoNCE to graph data, respectively. HDGI
[Park et al., 2020] extends DGI to multiplex network by in-
dividually applying DGI to each graph and combining them
via consistency regularization. Graph Information Bottleneck
(GIB) [Wu et al., 2020] is the first to incorporate IB [Tishby
et al., 2000] principle to GNNs. It main focus is the adversar-
ial attack instead of performance improvement. Beside, GIB
can’t be directly applied to HIN to effectively exploit the rich
information containing in multiple meta-paths.

4 Experiments
In this part, we experimentally evaluate our proposed HGIB
on node classification and clustering. HGIB firstly learn sets
of node representations in unsupervised manner, then these
representations are used for classification and clustering.
Datasets. Two citation network datasets ACM and DBLP,
and a movie dataset IMDB, are employed for evaluation. The
detailed descriptions of these heterogeneous graph data used
in experiments are shown in Table 1.
Baselines. HGIB is compared with some state-of-the-art al-
gorithms including traditional (heterogeneous) network em-
bedding methods and graph neural networks, such as recent
methods DeepWalk [Perozzi et al., 2014] [Dong et al., 2017]
[Dong et al., 2017], GCN [Kipf and Welling, 2017], GAT
[Velickovic et al., 2018], HAN [Wang et al., 2019], GTN
[Yun et al., 2019], DGI [Velickovic et al., 2019] and HDGI
[Park et al., 2020]. Note that, GCN, GAT, HAN and GTN are
semi-supervised methods, while DGI, HDGI and our HGIB
are unsupervised ones. Besides, the results obtained from
HGIB with randomly initialization are provided to demon-
strate the lifting power of information bottleneck.
Implementation details. The embedding dimension is set
to 128 for all the above methods . Adam is employed as the
optimizer. For IMDB and ACM, the learning rate is set to
10−3, and the encoder consists of two layers GCN with the
output dimensions of two GCN layers are 512 and 128 re-
spectively. For DBLP, the learning rate is set as the same as
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(a) DGI for ACM (b) HAN for ACM (e) HGIB for ACM(c) HGIB for ACM (PAP) (d) HGIB for ACM (PSP)

(f) DGI for DBLP (g) HAN for DBLP (j) HGIB for DBLP(h) HGIB for DBLP (APA) (i) HGIB for DBLP (APCPA)

Figure 2: The visualization of the embeddings obtained from DGI, HAN (semi-supervised) and our proposed HGIB on ACM and DBLP.
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Figure 3: The performance gains of GNN trained with HGIB compared to the one with random initialization on ACM (a) and DBLP (b).

Methods ACM DBLP IMDB
Metrics NMI ARI NMI ARI NMI ARI

DeepWalk 41.61 35.10 76.53 81.35 1.45 2.15
metapath2 21.22 21.00 74.30 78.50 1.20 1.70

GCN 51.40 53.01 75.01 80.49 5.45 4.40
GAT 57.29 60.43 71.50 77.26 8.45 7.46
DGI 41.09 34.27 59.23 61.85 0.56 2.60

HDGI 54.35 49.48 60.76 62.27 1.87 3.70
HAN 61.56 64.39 79.12 84.76 10.87 10.01
GTN 55.98 49.62 65.86 63.49 4.32 1.90
HGIB 70.55 71.47 88.46 87.29 12.09 10.80

Table 3: Comparison on node clustering in ARI and NMI.

above but the output dimensions of the GCN layer are 256
and 128 respectively. The early stopping with patience of 30
is utilized. The hyper-parameter γ is always fixed as 10−3.

4.1 Classification and Clustering Results
For classification task, we randomly draw out 20%, 40% and
60% of nodes for training the linear regression classifier. This
procedure is repeated for 20 times and report the averaged
(Micro and Macro) F1-score. The results are shown in Table
2. It shows that HGIB achieves the best performance on al-
most all the datasets and various ratio of train set, especially
for supervised methods such as GCN, GAT and HAN.

For clustering task, Kmeans is employed and the Normal-
ized Mutual Information (NMI) and Adjusted Rand Index
(ARI) are used to assess the quality of the clustering results.
Similarly, the process is repeated for 20 times and the av-

eraged results are reported in Table 3. HGIB significantly
outperforms the baselines.

It can be observed that the performance improvements on
clustering task are more remarkable compared to those on
classification task. In fact, this phenomenon is not surprising
due to the different focuses of clustering and classification
tasks. Both of them are dependent on the comprehensiveness
and importance of the representations. The classification task
pays much attention on comprehensiveness, since the given
labels play the role of feature selection, while the clustering
pays much attention on the importance for the lack of supervi-
sion. Although HGIB enhances both comprehensiveness and
importance of the representations, the importance improve-
ment is more significant, because its intention is to discard
the as much specific information as possible. Thus, its im-
provement on HGIB is more notable.

4.2 Case Study
Comparison with random parameters. To verify the im-
provements induced by the learned parameters via HGIB, the
performances of learned parameters are compared with that
of randomly initialized ones. The results are shown in Fig.
3. It shows that the performances are consistently and signif-
icantly improved, no matter the final representations are from
one or two sub-graphs. This demonstrates the effectiveness
of the proposed HGIB.

Impacts of pairs of meta-paths. The impacts of different
pairs of meta-paths on performance are investigated. The
results are shown in Fig. 4. It illustrates some interesting
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(a) meta-paths pair (b) hyper-parameter
Figure 4: Impacts of meta-paths pair.

points. 1) The lowest performances are achieved when the
two meta-paths are identical as shown on the diagonal. This
corresponds to the Case 2 in Sec 3.4. 2) If the two meta-paths
are very different, the higher performance is achieved. For
example, the best performance is achieved when author and
subject appear in two meta-path, respectively, e.g. PAP vs.
PSP. This corresponds to the Case 1 in Sec 3.4.

Hyper-parameter γ analysis. The hyper-parameter γ
varies in 1, 10−1, 10−2, 10−3. The impacts on performance
on DBLP network with different presents of labels are shown
in Tab. 4. Since the best performance is achieved when
γ = 10−3, thus this value is adopted as the default.

5 Conclusions
This paper replaces the complementary hypothesis of the
multiple homogeneous attributed networks induced by differ-
ent meta-paths, which has been Heterogeneous Graph Neural
Networks, with an alternative consensus one. The consen-
sus assumption is implemented as Heterogeneous Graph In-
formation Bottleneck (HGIB) by extending information bot-
tleneck to unsupervised manner via self-supervised strategy.
The proposed HGIB can be regard as the generalizations of
both the semi-supervised heterogeneous GNNs and the info-
max on homogeneous graph. Extensive experiments on real
datasets demonstrate the correctness and the effectiveness of
the consensus hypothesis by verifying the significant perfor-
mance improvement of the unsupervised HGIB compared to
the most semi-supervised state-of-the-art methods.

Acknowledgments
This work was supported in part by the National Natural
Science Foundation of China under Grant 61972442, Grant
61802391, Grant U2001202, Grant U1936208 and Grant
61802282, in part by the Key Research and Development
Project of Hebei Province of China under Grant 20350802D
and 20310802D; in part by the Natural Science Foundation
of Hebei Province of China under Grant F2020202040, in
part by the Hebei Province Innovation Capacity Enhance-
ment Project under Grant 199676146H, in part by the Nat-
ural Science Foundation of Tianjin of China under Grant
20JCYBJC00650, in part by the Key Program of the Chinese
Academy of Sciences under Grant QYZDB-SSW-JSC003,

Metrics Ratio 1 10−1 10−2 10−3

DBLP

Micro
F1

20% 89.99 91.09 94.52 95.09
40% 90.73 95.76 95.83 96.13
60% 91.07 95.62 95.80 96.20
80% 91.55 95.73 95.88 95.58

Macro
F1

20% 88.80 92.15 94.58 94.76
40% 89.02 92.68 92.19 94.89
60% 88.93 91.26 93.59 94.52
80% 90.15 93.04 94.00 94.06

ACM

Micro
F1

20% 86.37 90.07 93.38 92.92
40% 87.81 91.76 91.75 92.80
60% 87.93 89.81 90.05 91.34
80% 89.26 90.63 93.79 93.45

Macro
F1

20% 82.55 89.97 92.36 92.75
40% 84.60 90.39 91.46 90.88
60% 85.53 90.04 90.95 91.17
80% 87.48 91.00 90.47 92.62

IMDB

Micro
F1

20% 54.18 60.78 62.95 63.52
40% 56.98 61.10 60.41 63.28
60% 56.84 60.30 61.18 61.57
80% 53.29 60.05 60.17 54.44

Macro
F1

20% 49.77 56.02 56.10 58.23
40% 50.09 58.62 59.44 59.65
60% 48.77 53.64 59.86 60.22
80% 44.93 58.25 57.46 60.20

Table 4: Impact of Hyper-parameter γ

and in part by State Key Laboratory of Software Develop-
ment Environment under Grant SKLSDE-2020ZX-18.

A Proof of Eq. (10)

IΘ(1)(v(1); h(1)|v(2))

= Ev1,v2Eh
[
log

pΘ(1)(h(1) = h|v(1) = v1)

pΘ(1)(h(1) = h|v(1) = v2)

]
= Ev1,v2Eh

[
log

pΘ(1)(h(1) = h|v(1) = v1)

pΘ(2)(h(2) = h|v(2) = v2)

]
+Ev1,v2Eh

[
log

pΘ(2)(h(2) = h|v(2) = v2)

pΘ(1)(h(1) = h|v(1) = v2)

]
= DKL(pΘ(1)(h(1)|v(1))||pΘ(2)(h(2)|v(2)))

−DKL(pΘ(1)(h(2)|v(1))||pΘ(2)(h(2)|v(2)))

≤ DKL(pΘ(1)(h(1)|v(1))||pΘ(2)(h(2)|v(2))), (16)

B Proof of Eq. (12)

IΘ(1)(v(2); h(1))

= IΘ(1)Θ(2)(h(1); h(2)v(2))− IΘ(1)Θ(2)(h(1); h(2)|v(2))

= IΘ(1)Θ(2)(h(1); h(2)v(2))

= IΘ(1)Θ(2)(h(1); h(2)) + IΘ(1)Θ(2)(h(1); v(2)|h(2))

≥ IΘ(1)Θ(2)(h(1); h(2)), (17)
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