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Abstract
Identification of module or community structures
is important for characterizing and understanding
complex systems. While designed with different ob-
jectives, i.e., stochastic models for regeneration and
modularity maximization models for discrimination,
both these two types of model look for low-rank
embedding to best represent and reconstruct net-
work topology. However, the mapping through such
embedding is linear, whereas real networks have var-
ious nonlinear features, making these models less
effective in practice. Inspired by the strong represen-
tation power of deep neural networks, we propose a
novel nonlinear reconstruction method by adopting
deep neural networks for representation. We then
extend the method to a semi-supervised community
detection algorithm by incorporating pairwise con-
straints among graph nodes. Extensive experimental
results on synthetic and real networks show that
the new methods are effective, outperforming most
state-of-the-art methods for community detection.

1 Introduction
Real-world systems often appear in networks, e.g., social net-
works in Facebook media, protein interaction networks, power
grids and the Internet. Real-world networks often consist of
functional units, which manifest in the form of network mod-
ules or communities, subnetworks with nodes more tightly
connected with respect to the rest of the networks. Finding
network communities is, therefore, critical for characteriz-
ing the organizational structures and understanding complex
systems.

A great deal of effort has been devoted to developing net-
work community finding methods, among which, two are
widely adopted and thus worth mentioning. The stochastic

⇤Corresponding author.

model [Psorakis et al., 2011] focuses on deriving generative
models of networks. Such a generative model in essence maps
a network to an embedding in a low-dimensional latent space.
The mapping can be done by, e.g., nonnegative matrix fac-
torization (NMF) [Wang et al., 2008]. Unlike the stochastic
model, the modularity maximization model [Newman, 2006],
as the name suggests, attempts to maximize a modularity func-
tion on network substructures. The optimization can be done
by eigenvalue decomposition (EVD), which is equivalent to
reconstructing a low-rank modularity matrix.

In short, while appeared in different forms, the stochastic
model and modularity maximization model share an essential
commonality, i.e., mapping a network to a low-dimensional,
latent space embedding. Motivated by the strong discrimi-
nation power of the modularity maximization model and the
relationship between maximizing modularity and reconstruct-
ing modularity matrix by finding low-dimensional embedding,
we aim to seek a more effective reconstruction algorithm for
modularity optimization. However, all these types of embed-
ding adopted in the two popular models are linear, e.g., NMF
in the stochastic model and EVD in the modularity maximiza-
tion model. This is in sharp contrast to the fact that real-world
networks are full of nonlinear properties, e.g., a relationship
(e.g., distance) among nodes may not necessarily be linear.
As a result, the representation power of these linear mapping
based models is limited on real-world networks.

Neural networks, particularly that with deep structures, are
well known to provide nonlinear low-dimensional represen-
tations [Bourlard and Kamp, 1988]. They have been success-
fully applied to complex problems and systems in practice,
such as image classification, speech recognition, and playing
an ancient strategic board game of Go. To the best of our
knowledge, however, deep neural networks have not yet been
successfully applied to community detection.

Taking advantage of the nonlinear representation power of
deep neural networks, we propose in this paper a nonlinear re-
construction (DNR) algorithm for community detection using
deep neural networks.
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It is known that information beyond network topology can
greatly aid network community identification [Zhang, 2013;
Yang et al., 2015]. Examples of such information include
semantics on nodes, e.g., names and labels, and constraints on
relationships among nodes, e.g., community membership con-
straints between adjacent nodes (pairwise constraints). In
the current study, we extend our DNR method to a semi-
supervised DNR (semi-DNR) algorithm to explicitly incor-
porates pairwise constraints among nodes to further improve
community detection.

2 Reconstruction based Community Detection
We consider an undirected and unweighted graph G = (V,E),
where V = {v1, v2, ..., vN} is the set of N vertices, and E =
{eij} the set of edges each of which connects two vertices in
V . The adjacency matrix of G is a nonnegative symmetric
matrix A = [aij ] 2 RN⇥N

+ where aij = 1 if there is an edge
between vertices i and j, or aij = 0 otherwise, and aii = 0
for all 1  i  N . The degree of vertex i is defined as
ki =

P
j aij . The problem of community detection is to find

K modules or communities {Vi}Ki=1 that are subgraphs whose
vertices are more tightly connected with one another than with
outside vertices. Here, we consider disjoint communities, i.e.,
Vi \ Vj = ; for i 6= j.

2.1 Stochastic Model
In stochastic model [Psorakis et al., 2011; He et al., 2015;
Jin et al., 2015], aij can be viewed as the probability that
vertices i and j are connected. This probability can be further
considered to be determined by the probabilities that vertices
i and j generate edges belonging to the same community.
We introduce latent variables H = [hik] 2 RN⇥K

+ with hik

representing the probability that node i generates an edge
belonging to community k. This latent variable also captures
the probability that node i belongs to community k, and each
row of H can be considered as a community membership
distribution of a vertex. The probability that vertices i and j is
connected by a link belonging to community k is then hikhjk,
and the probability that they are connected is:

âij =
KX

k=1

hikhjk.

As a result, the community detection problem can be formu-
lated as a nonnegative matrix factorization A ⇡ Â = HHT .
The NMF-based community detection approaches [Psorakis et
al., 2011] aim to find a nonnegative membership matrix H to
reconstruct adjacency matrix A. There are two common objec-
tive (loss) functions to quantify the reconstruction error. The
first is based on the square loss function [Wang et al., 2008;
Zhang et al., 2007] which is equivalent to the square of the
Frobenius norm of the difference between two matrices

LLSE(A,HHT ) = ||A�HHT ||2F .

The second is based on the Kullback-Leibleer divergence (KL-
divergence) between two matrices

LKL(A,HHT ) = KL(A||HHT ).

The index of the largest element in the i
th row of H indicates

the community that node i belongs to.
There are many variations to the stochastic model, such

as nonnegative matrix tri-factorization and stochastic block
model. Nearly all of these models can be intuitively viewed as
finding new representations in a low-dimensional space that
can best represent and reconstruct the adjacency matrix.

2.2 Modularity Maximization Model
This model was introduced by Newman [Newman, 2006] to
maximize a modularity function Q, which is defined as the dif-
ference between the number of edges within communities and
the expected number of such edges over all pairs of vertices.
For example, consider a network with two communities, then

Q =
1

4m

X

ij

⇣
aij �

kikj

2m

⌘
(hihj),

where hi equals to 1 (or -1) if vertex i belongs to the first (or
second) group, kikj

2m is the expected number of edges between
vertices i and j if edges are placed randomly, ki is the degree
of vertex i and m = 1

2

P
i ki is the total number of edges in the

network. By defining modularity matrix B = [bij ] 2 RN⇥N

whose element is bij = aij � kikj

2m , modularity Q can be
written as

Q =
1

4m
hTBh, (1)

where h = [hi] 2 RN is a community membership indicator
vector. Maximizing Eq. (1) is NP-hard, for which many
optimization algorithms have been proposed, such as extremal
optimization [Duch and Arenas, 2005]. In practice, we can
relax the problem by allowing variable hi to take any real value
and hTh = N . To generalize Eq. (1) to K > 2 communities,
we can define an indicator matrix H = [hij ] 2 RN⇥K and
obtain

LMOD(H,B) = Q = Tr(HTBH),

s.t.Tr(HTH) = N,

where Tr(.) is the trace of a matrix. Based on Rayleigh Quo-
tient, the solution to this problem is the largest K eigenvectors
of the modularity matrix B. Each row of matrix H can be
regarded as a new representation of the corresponding vertex
in the latent space, and clustering algorithms, such as k-means,
can be used to classify the nodes into disjoint groups in the
latent space.

The Eckart-Young-Mirsky Theorem [Eckart and Young,
1936] explores the relationship between the reconstruction and
singular value decomposition (SVD).
Theorem 1. [Eckart and Young, 1936] For a matrix D 2
Rm⇥n(m > n), if D = U⌃VT is the singular value decom-
position of D, and U, V, ⌃ = diag(�1,�2, ...,�m) where
�1 > �2 > ... > �m are as follows:

U = [U1U2],⌃ =


⌃1 0
0 ⌃2

�
,V = [V1V2],

where ⌃1 is r ⇥ r, U1 is m ⇥ r and V1 is n ⇥ r, then the
optimal solution to the following problem

argmin
D̂2Rm⇥n rank(D̂)6r

||D� D̂||F
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is D̂⇤ = U1⌃1V1
T and

||D� D̂⇤||F =
q

�
2
r+1 + ...+ �2

m.

The above theorem means that the matrix reconstruction
from the singular vectors corresponding to the K largest sin-
gular values is the best rank-K approximation to the origi-
nal matrix under the Frobenuis norm. Since modularity ma-
trix B is symmetric, there exists orthogonal decomposition
B = U⇤UT , where ⇤ is diagonal matrix with the eigen-
values of B as the diagonal elements and UTU = I. Thus,
the matrix reconstructed by the eigenvectors corresponding
to the K largest eigenvalues is also the best approximation to
the input matrix B with rank K. Therefore, the modularity
maximization problem can be regarded as reconstructing the
modularity matrix using a low-rank approximation.

Put together, stochastic model and modularity maximiza-
tion can be intuitively interpreted as to find low-dimensional
representations to best reconstruct given network structures. It
is important to note that both of them only reconstruct original
networks by linear reconstruction, using, e.g., NMF or SVD,
and ignore nonlinear properties of the networks. It is unclear
how NMF and SVD based approaches can be extended to
accommodate nonlinear low-dimensional embedding. We aim
to overcome this difficulty by using deep neural networks, the
focus of the current paper.

3 Deep Nonlinear Reconstruction Model
We now present a novel deep nonlinear reconstruction (DNR)
model for community detection. We first introduce an Auto-
Encoder, which is a key building block of the model, and
then describe a stacked Auto-Encoder. While in the following
discussion we focus on finding a nonlinear embedding that best
reconstructs the modularity matrix B, as inspired by the SVD-
based modularity maximization (Section 2.2), our method
can be readily applied to other network input forms, such as
adjacency and Laplacian matrices.

3.1 Reconstruction based on Auto-Encoder
Auto-Encoder is a special neural network that is used to learn
a new representation that can best approximate the original
data [Bourlard and Kamp, 1988; Hinton and Zemel, 1994].
We adopt modularity matrix B = [bij ] 2 RN⇥N as the input
to the Auto-Encoder. Here, the elements of B are bij =

aij � kikj

2m , and the i
th column bi of B represents vertex i.

The Auto-Encoder consists of two key components: encoder
and decoder. The encoder maps the original data B to a low-
dimensional embedding H = [hij ] 2 Rd⇥N where d < N

and the i
th column of H, i.e., hi, represents vertex i in the

latent space

hi = f(bi) = s(WHbi + dH), (2)

where WH 2 Rd⇥N
,dH 2 Rd⇥1 are the parameters to be

learned in the encoder, and s(.) is an element-wise nonlinear
mapping, such as sigmoid function ssigmoid(x) =

1
1+e�x or

tanh function stanh(x) = ex�e�x

ex+e�x . The decoder maps the

latent representation H back into the original data space, i.e.,
reconstructs the original data from the latent representation:

mi = g(hi) = s(WMhi + dM ),

where WM 2 RN⇥d
,dM 2 RN⇥1 are the parameters to

be learned in the decoder and g(.) is another element-wise
nonlinear mapping similar to s(.). Auto-Encoder aims at
learning a low-dimensional nonlinear representation H that
can best reconstruct the original data B, i.e. minimize the
difference between the original data B and reconstruction data
M under parameters ✓ = {WH ,dH ,WM ,dM}

✓̂ = argmin
✓

L✓(B,M) = argmin
✓

NX

i=1

L✓(bi,mi)

= argmin
✓

NX

i=1

L✓(bi, g(f(bi))), (3)

where L✓(bi,mi) is a distance function that measures the
reconstruction error. Here we adopt the Euclidean distance
and sigmoid cross-entropy distance as distance functions. The
sigmoid cross-entropy distance maps elements in bi = [bji] 2
RN⇥1 and mi = [mji] 2 RN⇥1 to [0, 1] using sigmoid func-
tion �(x) = 1

1+e�x , and then computes the cross-entropy of
them as

NX

j=1

�
�(mji) log(�(bji)) + (1� �(mji)) log(1� �(bji))

�
.

After training the Auto-Encoder, WH and dH are obtained
and Eq. (2) can be used to generate the new representations
for all vertices.

3.2 Optimization
Eq. (3) can be solved by back-propagation with stochas-
tic gradient descent. In each iteration, the parameters ✓ =
{WH ,dH ,WM ,dM} are updated as follows

W
ji
↵ = W

ji
↵ � �

@

@W
ji
↵

L✓(B,M),

d
j
↵ = d

j
↵ � �

@

@d
j
↵

L✓(B,M),

where ↵ 2 {H,M}. By defining z↵ = W↵x+ d↵, we have

@

@W
ji
↵

L✓(X, g(f(X))) =
NX

i=1

@

@W
ji
↵

L✓(xi, g(f(xi)))

=
NX

i=1

@

@z
j
↵

L✓(xi, g(f(xi)))
@

@W
ji
↵

z
j
↵ =

NX

i=1

�
j
↵x

T
i ,

@

@d
j
↵

L✓(X, g(f(X))) =
NX

i=1

@

@d
ji
↵

L✓(xi, g(f(xi)))

=
NX

i=1

@

@z
j
↵

L✓(xi, g(f(xi)))
@

@d
j
↵

z
j
↵ =

NX

i=1

�
j
↵,
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where �
j
↵ = @

@zj
↵
L✓(xi, g(f(xi))) denotes the contribution

of a node to the overall reconstruction error. For Euclidean
distance based L✓(B,M),

�j
M

= �
NX

i=1

(bij �mij)s
0(zj

M
), �j

H
=

� NX

i=1

W ji

H
�iM

�
s0(zj

H
),

where s
0(x) is the derivative of s(x).

3.3 Stacked Auto-Encoder
Recently, deep learning has been successful on various prob-
lems in many fields, such as image classification, semantic seg-
mentation [Liu et al., 2015; Liang et al., 2015]. However, as
the number of layers increases, the space of parameters grows
exponentially, making optimization inefficient. A compromis-
ing strategy is to train the network layer by layer [Vincent et
al., 2010].

To take advantage of a deep architecture, we stack a series
of Auto-Encoders to form a DNR model. For a deep Auto-
Encoder network, we train the first Auto-Encoder by recon-
structing the original data, i.e., the modularity matrix B and
obtain a new representation H1 2 RN⇥t1 . We then train the
i
th Auto-Encoder by reconstructing the output of the (i� 1)th

Auto-Encoder and obtain a representation Hi 2 RN⇥ti , where
ti < ti�1. The number of Auto-Encoders we stack and the
dimensions of new representations, i.e., tis’, are discussed in
Section 5.2.

4 Pairwise Constrained Semi-supervised
Community Detection

We now incorporate pairwise constraints on vertices into the
proposed DNR model and introduce a novel reconstruction
space graph regularization for semi-supervised DNR (semi-
DNR). If we have a priori knowledge that vertices i and j

belong to the same community, we can make use of this knowl-
edge in two different ways. First, to classify two nodes into
the same community, the new representations of nodes i and j,
i.e., hi and hj, should be similar, since the new representations
are used to cluster the two vertices after encoding. Second,
this a priori information should also be encoded into the DNR
model to further affect the embedding of other vertices. There-
fore, instead of just modifying the embedding representation,
we incorporate the pairwise constraints into the loss function
of the Auto-Encoder in Eq. (3).

To measure the similarity of their latent representations,
we can adopt either Euclidean distance or Kullback-Leibleer
divergence (KL-divergence), i.e.

DLSE(hi,hj) = ||hi � hj ||22 =
KX

k=1

(hik � hjk)
2
,

DKL(hi||hj) =
KX

k=1

⇣
hik log

⇣
hik

hjk

⌘
� hik + hjk

⌘
.

If nodes i and j are known to belong to the same community,
we then try to minimize the difference between their new rep-
resentations DLSE(hi,hj) . We define a pairwise constraint
matrix O = [oij ] 2 RN⇥N

+ , where oij = 1 if nodes i and j

are known to be in the same community, or oij = 0 otherwise.
Thus, we can write the pairwise constraints as

RLSE(O,H) =
1

2

NX

i=1

NX

j=1

oij ||hi � hj ||22

= Tr(HTDH)� Tr(HTOH) = Tr(HTLH),

where Tr(.) is the trace of a matrix, D = [dij ] 2 RN⇥N
+ a

diagonal matrix whose entries are row summation of O, i.e.,
dii =

PN
j=1 oij , and L = D � O the graph regularization

matrix (Laplacian matrix) of a priori information O. Similarly,
the KL-divergence based constraints can be written as:

RKL(O,H) =
1
2

NX

i=1

NX

j=1

oij
⇣
DKL(hi||hj) +DKL(hj ||hi)

⌘
,

which takes into account the asymmetry of KL-divergence
and averages DKL(hi||hj) and DKL(hj ||hi). By minimiz-
ing RLSE(O,H) or RKL(O,H), we expect the new repre-
sentations of two nodes i and j are similar if we have some
information indicating that these two nodes belong to the same
community, i.e., the corresponding element oij = 1 .

By incorporating the pairwise constraints in Eq (4) with the
reconstruction error function in Eq (3), we obtain the overall
loss function for semi-supervised DNR (semi-DNR) as

✓̂ = argmin
✓

L✓(B,M) + �Tr(HTLH), (4)

where � is a parameter for making a tradeoff between the
reconstruction error (the first term L(B,M)) and the consis-
tency of the new representations with a priori information (the
second term Tr(HTLH)). For semi-DNR, we can impose a
graph regularization term on the reconstruction layers of all
Auto-Encoders, and then evaluate the performance improve-
ment as discussed in Section 5.3.

Eq. (4) can also be solved using back-propagation. Since
the reconstruction space graph regularization term Tr(HTLH)
is independent of reconstruction of M, it does not affect the
update of WM and bM . Therefore, we only need to modify
�
i
H as �iH(semi) = �

i
H + �

i
graph, where

�graph lse = H(L+ LT )� s
0(H),

�graph kl = H(L+ LT )÷H � s
0(H),

denote how much a node is responsible for the inconsistency of
the derived representation and the pairwise constraints based
on the Euclidean distance and KL-divergence, respectively.
Here � and ÷ denote the element-wise multiplication and
division, respectively.

5 Experimental Analysis
To evaluate the proposed DNR and semi-DNR methods, we
analyzed their performance on widely used synthetic bench-
marks and real-world networks. We first compared DNR with
seven state-of-the-art approaches, which are divided into two
categories based on whether they are based on modularity max-
imization. The modularity based methods include the spectral
(SP) algorithm [Newman, 2006], the external optimization
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(c) LFR network (large community)

Figure 1: Comparison of DNR with six competing methods on GN and LFR networks.

Table 1: Performance on Real-world Networks (the best performance is in bold and the second best performance is in italics)

Datasets N M K SP EO FN FUA DNR L2 DNR CE
Karate [Zachary, 1977] 34 78 2 1.000 0.587 0.692 0.587 1.000 1.000
Dolphins [Lusseau and Newman, 2004] 62 159 2 0.753 0.579 0.572 0.516 0.889 0.818
Friendship6 [Xie et al., 2013] 68 220 6 0.418 0.952 0.727 0.852 0.888 0.924
Friendship7 [Xie et al., 2013] 68 220 7 0.477 0.910 0.762 0.878 0.907 0.932
Football [Girvan and Newman, 2002] 115 613 12 0.334 0.885 0.698 0.890 0.927 0.914
Polbooks [Newman, 2006] 105 441 3 0.561 0.557 0.531 0.574 0.552 0.582
Polblogs [Adamic and Glance, 2005] 1,490 16,718 2 0.511 0.501 0.499 0.375 0.389 0.517
Cora [Yang et al., 2009] 2,708 5,429 7 0.295 0.441 0.459 0.260 0.463 0.421

(EO) algorithm [Duch and Arenas, 2005], the FUA algorithm
[Blondel et al., 2008], the MABA algorithm [He et al., 2012]
and the (FN) algorithm [Newman, 2004]. The remaining meth-
ods include the (FEC) algorithm [Yang et al., 2007] and the
Infomap algorithm [Rosvall and Bergstrom, 2008].

To assess the effectiveness of using pairwise constraints,
we compared semi-DNR with two existing semi-supervised
community detection algorithms, ModLink [Zhang, 2013] and
GraphNMF [Yang et al., 2015]. The former transforms pair-
wise constraints into information of network topology, modi-
fies the adjacency matrix and uses a conventional algorithm to
find communities on new label-refined networks. The latter
incorporates the labels by constraining the nodes belonging to
the same community to have similar membership representa-
tions. We adopted the Normalized Mutual Information (NMI)
for performance measure.

5.1 Experiment Setup

Table 2: Deep Nonlinear Reconstruction Network Setting

Datasets N Layers Configuration
Karate 34 34-32-16
Dolphins 62 62-32-16
Friendship6 68 68-32-16
Friendship7 68 68-32-16
Football 115 115-64-32-16
Polbooks 105 105-64-32-16
Polblogs 1,490 1,490-256-128-64
Cora 2,708 2,708-512-256-128
GN Network 128 126-64-32-16
LFR Network 1,000 1,000-512-256-128

The layer configurations of the deep neural networks for
different problems tested are shown in Table 2. The networks
have at most 3 stacked Auto-Encoder, and the dimension of
each latent space is less than that of its input and output spaces.
For example, the stacked Auto-Encoder network for the LFR
network consists of three Auto-Encoders, where the first is
1,000-512-1,000, the second 512-256-512 and the third 256-
128-256. All Auto-Encoders were trained separately. We took
a modularity matrix as the input to the first Auto-Encoder,
and trained the it to minimize the reconstruction error, then
took the embedding result as the input to the second Auto-
Encoder, and so on. We set the training batch to the size of the
network and ran at most 100,000 iterations. For each network
we trained a DNR model with 10 random initializations, and
took the latent representations from three Auto-Encoders for
clustering. Here, we adopted the k-means for clustering and
returned the results with the maximum modularity.

5.2 Community Detection Results
We considered two types of synthetic networks, Girvan-
Newman (GN) networks [Girvan and Newman, 2002] and
Lancichinetti-Fortunato-Radicchi (LFR) networks [Lanci-
chinetti et al., 2008]. Each GN network consists of 128 nodes
divided into 4 communities of 32 nodes each. Each node
has on average 16 edges, among which Zout edges are inter-
community edges. The results are shown in Figure 1(a). As
shown, DNR outperforms all competing methods, especially
when Zout > 6.

The LFR networks are more complicated than the GN net-
works. As suggested in [Lancichinetti et al., 2008], we set
the number of nodes to 1000, the average degree to 20, the
exponent of a vertex degree and the community size to -2
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(b) GN newtwork with Zout=8
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(c) LFR network with µ = 0.75
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(d) LFR network with µ = 0.8

Figure 2: Comparison of semi-DNR and two competing methods on GN and LFR networks.

and -1 respectively, and varied the mixing parameter µ from
0.6 to 0.8. To fully evaluate the performance on networks
with different community sizes, we generated two groups of
networks: one with community sizes from 10 to 50 while the
other from 20 to 100. The results on these two groups of net-
works are shown in Figs 1(b) and 1(c). As shown, DNR can
successfully detect small and large communities. It achieves
the best performance when µ > 0.65 on networks with small
community size (middle figure, Figure 1) and µ > 0.6 on
networks with large community sizes (right figure, Figure 1).
While Infomap performs slightly better than DNR when is
small, it completely fails when µ > 0.75.

In summary, the experimental results on synthetic networks
showed that the deep nonlinear model is more effective on
difficult networks with vague community structures and is
competitive on easy networks with clear community structures.
While the factors for such a superb performance compared
with other modularity-based methods remains to be further
investigated, it may be partially attributed to the nonlinear
structure of our new model, which helps to mitigate the reso-
lution limit [Fortunato and Barthelemy, 2007] and the extreme
degeneracy [Good et al., 2010] problems, both of which are
often suffered from modularity optimization.

Nine widely-used real networks, listed in Table 1, were
used for evaluation. As shown in previous work [Psorakis et
al., 2011], no single unified loss function seemed to exist that
can successfully detect communities in all networks. In our
experiments, we also adopted the Euclidean distance and sig-
moid cross-entropy as error functions. We used sigmoid cross-
entropy instead of KL-divergence because the former can be
integrated with the sigmoid function for back-propagation.

The results are shown in Table 1. Here, we compared DNR
with other well-known modularity-based community detec-
tion methods. As shown in the table, DNR with the L2 norm
(DNR L2) and with the cross-entropy distance (DNR CE)
outperforms most of the competing modularity-based opti-
mization algorithms.

5.3 Semi-supervised Community Detection Results
To evaluate the new semi-supervised deep nonlinear recon-
struction (semi-DNR) method, we used networks on which it
is difficult to find satisfactory community structures without
label information. As shown in Figure 2, the performance is
mediocre on GN network with Zout = 8 and LFR network
with µ = 0.75 and 0.8. Besides, we chose GN network with
Zout = 7 where the methods without labels can also achieve

better results for comparison. Here, we set the balancing pa-
rameter � = 1000. We also verifed the effects of pairwise
constraints on more than one layer i.e., only the bottom layer,
both bottom and middle layers and all the three layers.

The results are shown in Figure 2. On the GN with Zout =
7, all the methods have similar improvements by enforcing the
same percent of labels. On the networks where unsupervised
methods cannot obtain satisfactory results, in comparison, the
semi-DNR achieves much better performance with the same
number of labels. For example, with 20% pairwise constraints,
the NMI of semi-DNR achieves 0.95 while that of GraphNMF
and ModLink only achieve 0.76 and 0.79, respectively, on LFR
network with µ = 0.8 (right figure in Figure 2). This means
the semi-DNR is much more efficient on the use of pairwise
constraints than other methods. Furthermore, the performance
of enforcing pairwise constraints on multi-layers has similar
improvements. It illustrates that semi-DNR can fully explore
pairwise constraints by only one layer graph regularization.

6 Conclusion
In order to overcome the serious drawback of linear low-rank
embedding used by the widely adopted stochastic model and
modularity maximization model for network community iden-
tification, we proposed a nonlinear model in deep neural net-
works to gain representation power for large complex net-
works; developed an algorithm using the model for network
community detection; and further extended this method to a
semi-supervised deep nonlinear reconstruction algorithm by
incorporating pairwise constraints. Extensive experimental
results on synthetic and real networks illustrate that our new
methods outperform the existing state-of-the-art methods for
network community identification. In the future, we plan to
study model selection using the latent space embedding from
DNR to make the model and methods more robust.

7 Acknowledgments
This work was supported by National Natural Science Foun-
dation of China (No. 61503281, 61502334, 61303110,
61422213), ”Strategic Priority Research Program” of the Chi-
nese Academy of Sciences (XDA06010701), Open Funding
Project of Tianjin Key Laboratory of Cognitive Computing
and Application, Foundation for the Young Scholars by Tianjin
University of Commerce (150113), the Talent Development
Program of Wuhan, the municipal government of Wuhan,
Hubei, China (2014070504020241), and an internal research

2257



grant of Jianghan University, Wuhan, China, as well as by
United States National Institutes of Health (R01GM100364).

References
[Adamic and Glance, 2005] Lada A Adamic and Natalie Glance.

The political blogosphere and the 2004 us election: divided they
blog. In Proceedings of the 3rd international workshop on Link
discovery, pages 36–43. ACM, 2005.

[Blondel et al., 2008] Vincent D Blondel, Jean-Loup Guillaume, Re-
naud Lambiotte, and Etienne Lefebvre. Fast unfolding of commu-
nities in large networks. Journal of statistical mechanics: theory
and experiment, 2008(10):P10008, 2008.

[Bourlard and Kamp, 1988] Hervé Bourlard and Yves Kamp. Auto-
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