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Abstract—Most of the existing Graph Neural Networks
(GNNs) are deliberately designed for semi-supervised learning
tasks, where supervision information (labelled node) is utilized
to mitigate the oversmoothing problem of message passing.
Unfortunately, the oversmoothing problem tends to be more
severe in unsupervised tasks, since supervision information is
not available. Since community structure/cluster is an essen-
tial characteristic of network, a natural approach to reduce
the oversmoothing problem is to also constrain the node
embeddings to maintain their own characteristics to prevent
all the node embeddings from becoming too similar to be
distinguished. In this paper, a novel Optimal Transport based
Graph Neural Network (OT-GNN) is proposed to overcome the
oversmoothing problem in unsupervised GNNs by imposing
the equal-sized clustering constraints to the obtained node
embeddings. To solve the combinatorial optimization problem,
the constrained objective function of unsupervised GNN is
relaxed to an Optimal Transport problem, and a fast version
of the Sinkhorm-Knopp algorithm is adopted to handle large
networks. Extensive experiments on node clustering and classi-
fication demonstrate the superior performance of our proposed
OT-GNN.

Keywords-graph neural network; network embedding; unsu-
pervised learning; node clustering;

I. INTRODUCTION

Most Graph Neural Networks (GNNs) [1], [2] are de-

liberately designed for (transductive and inductive) semi-

supervised learning tasks, where supervision information

(labelled nodes) plays the important role of enhancing the

distinguishability. In fact, Laplacian smoothing (spatial per-

spective) [3] and low-pass filtering (spectral perspective) [4],

which have been accepted to be the reason for the success of

Graph Convolutional Network (GCN) [5], also significantly

reduce the expressive power, i.e. data distinguishability, due

to the over-smoothing problem [6]–[8]. Thus, the supervision

information is utilized to mitigate this adverse effect. Un-

fortunately, supervision information cannot fundamentally

solve this problem for the following two reasons. First and

foremost, supervision information is not available in unsu-

pervised tasks, such as network embedding, node clustering

and link prediction. Most existing unsupervised GNNs either

reconstruct the original information (adjacency matrix and

attribute matrix) [9]–[11] or maximize mutual information

[12], [13] to retain as much information as possible. Thus,

the oversmoothing problem tends to be more severe for

unsupervised GNNs than for semi-supervised ones. Second,

although learning the message aggregation from labelled

nodes can alleviate smoothing problem, it also induces

serious overfitting problem [14], [15], which also seriously

effects the performance.

In this paper, a novel Optimal Transport based Graph

Neural Network (OT-GNN) is proposed to overcome the

oversmoothing problem in unsupervised GNNs, which con-

strains all the node embeddings to be similar. Since commu-

nity structure/cluster is an essential characteristic of network

[16], a natural approach to reduce the oversmoothing prob-

lem is to also constrain the node embeddings to maintain

their own characteristics to prevent all the node embeddings

from becoming too similar to be distinguished. According to

this intuition, OT-GNN elegantly trains the GNNs by impos-

ing the clustering constraints to the obtained node embed-

dings. Specifically, the objective function of unsupervised

GNNs is firstly derived from the cross-entropy loss of the

semi-supervised node classification. This objective function

can be optimized with respect to the model parameters and

node labels. Unfortunately, it leads to a degenerate solution

which assigns all the nodes into a single class due to the

oversmoothing problem. Then, to prevent this degenerate

solution, clustering constraints are added to ensure the nodes

being uniformly classified into classes of equal size. To

solve the formulated combinatorial optimization problem,

the constrained objective function of unsupervised GNN is

relaxed to an Optimal Transport problem, which can be then

solved via linear programming in a polynomial time. To

speedup this process on large networks, a fast version of the

Sinkhorm-Knopp algorithm, which employs a regularization

term to the loss function, is adopted, and an iterative algo-

rithm is proposed with additional complexity proportional

to the network size. Besides of being employed to train the

GNNs, such as Graph Convolutional Network (GCN) [5] and

Graph Attention Network (GAT) [17] for node embedding

and clustering in an unsupervised manner, OT-GNN can also

be utilized to regularize other unsupervised GNNs, such as

Graph AutoEncoder (GAE) [9], for the link prediction task.
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The main contributions of this paper are summarized as

follows:

• To overcome the oversmoothing problem in unsuper-

vised GNNs, we propose a novel Optimal Transport

based Graph Neural Network (OT-GNN) with interac-

tive node embedding and clustering.

• To efficiently train the unsupervised GNNs, we relax its

constrained objective function to an Optimal Transport

problem and solve it via a fast version of the Sinkhorm-

Knopp algorithm.

II. PRELIMINARIES

In this section, the notations are first given. Then, the

basic concepts in Graph Neural Networks are provided.

A. Notations

A network can be represented by an attributed graph

G = (V,E,X). V = {vi|i = 1, ..., N} is a set of |V | = N
vertices, where vi is associated with a feature xi ∈ R

K .

X ∈ R
K×N represents the collection of the features. Each

column of X corresponds to a node. E stands for a set

of edges. Each of the edges connects two vertices in V .

The adjacency matrix A = [aij ] ∈ R
N×N is obtained

according to the network topology. If an edge connects

the vertices vi and vj , aij = 1, and vice versa. If self-

edges are allowed in the network, then ann = 1. Otherwise

ann = 0. dn =
∑

j anj stands for the degree of vn while

D = diag(d1, d2, ..., dN ) is the degree matrix of A. The

graph Laplacian and its normalized form are defined as

L = D −A and L̃ = D−
1
2LD−

1
2 , respectively.

For semi-supervised node classification task, a set of

vertices Vl ⊂ V are labelled. yi ∈ {1, 2, 3..., F} is utilized to

represent the label of vertex vi ∈ Vl, where F is the number

of classes. A typical semi-supervised node classification

algorithm classifies other nodes in V − Vl. For simplicity,

the first |Vl| nodes {vi}|Vl|
i=1 are assumed to be labelled, i.e.,

{y1, y2, ..., y|Vl|} are known.

B. Graph Neural Networks (GNNs)

Graph Neural Networks (GNNs) are designed from either

the spatial or spectral perspective. Spectral ones originate

from spectral graph convolution, while spatial ones are de-

signed along attribution propagation pipeline. By simplifying

the time-consuming spectral graph convolution operation

of existing spectral methods, Graph Convolutional Network

(GCN) [5] defines the graph convolution operation as

TGCN = σ(HGCN ) = σ(WXD̃−
1
2 ÃD̃−

1
2 ), (1)

where Ã = A+IN and D̃nn =
∑

j Ãnj = dn+1. W stands

for the trainable weight matrix of a fully-connected layer.

σ(.) represents the nonlinear activation function, such as

ReLU and softmax. HGCN ∈ R
K×N and TGCN denotes the

node representations (embeddings) before and after nonlin-

ear activation function σ(.), respectively. For clarity, HGCN

and TGCN are called node feature and node representation,

respectively. Eq. (1) can be formulated in a node-wise form

as

tGCN
i = σ(hGCN

i )

= σ
(
W

∑
j∈N(i)∪{i}

1√
(di + 1)(dj + 1)

xj

)
, (2)

where hGCN
i and tGCN

i , the ith columns of HGCN and

TGCN , are the feature and representation of node vi, respec-

tively. N(i) represents the neighbourhood of vertex vi. Some

recent work interprets GCN from smoothing and low-pass

filtering. Li et al. [3] concludes the mechanism and success

of GCN as performing a symmetric Laplacian smoothing

operation before the actual predictions. The performance

based on the smoothed attribute obviously outperforms that

based on the original attributes. Wu et al. [4] reduce the

unnecessary complexity and redundant computation of GCN

to Simplified Graph Convolution (SGC) by successively

removing nonlinearities and collapsing weight matrices be-

tween consecutive layers, and show that it corresponds

to a fixed low-pass filter followed by a linear classifier.

Although GCN and SGC significantly improve the perfor-

mance, its main drawback is the fixed propagation weight
1√

(di+1)(dj+1)
, which is completely determined by the de-

grees of the two connected nodes.

To overcome that drawback, Graph Attention Network

(GAT) [17] attempts to learn the propagation weight by

leveraging the self-attention mechanism as

αij = softmax (a(Wxi,Wxj)) (3)

=
exp

(
LeakyReLU(bT [Wxi||Wxj ])

)
∑

k∈N(i) exp (LeakyReLU(bT [Wxi||Wxk]))
,

where a(., .) stands for a neural network, || denotes the

concatenate operator and b ∈ R
2F is the learnable vector

for propagation weights. Then the node representation in

Eq. (2) can be enhanced to

tGAT
i = σ(hGAT

i ) = σ
(
W

∑
j∈N(i)

αijxj

)
, (4)

where both b and W are the trainable parameters. hi and ti
are adopted to represent the node feature and embedding by

ignoring the superscript, if we don’t emphasize the methods

used to obtain them.

1) Semi-supervised GCNs: To obtain the learnable pa-

rameters for (transductive and inductive) semi-supervised

node classification task, GNNs can be trained by minimizing

the cross-entropy between the predictions and given labels

of the labelled vertices vi ∈ Vl as

Lsup = −
∑
vi∈Vl

F∑
y=1

δ(yi − y) log(tiy), (5)
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where tiy is the yth element of node embedding ti. δ(.) is

Dirac delta function and δ(yi − y) = 1 if and only if y =
yi, otherwise δ(yi − y) = 0. By setting the dimensionality

of ti to the number of classes F and adopting softmax as

the nonlinearity function σ(.), tiy can be considered as the

predicted probability of node vi being classified to class y
as

tiy = p(y|hi) = softmaxy(hi) =
exp(hiy)∑
k exp(hik)

. (6)

III. PROPOSED MODELS

In this section, a novel unsupervised graph neural net-

work (GNN), Optimal Transport based GNN (OT-GNN)

is proposed. First, unsupervised GNN is derived from the

semi-supervised one by adding clustering constraint to pre-

vent oversmoothing, i.e., embedding collapsed. Then, the

objective function of unsupervised GNN is interpreted from

Optimal Transport perspective for efficient solution, and

a fast version of Sinkhorn-Knopp algorithm is adopted to

efficiently solve it.

A. Unsupervised Graph Neural Networks

In this subsection, we derive unsupervised graph neural

network from the semi-supervised one in Section II-B1. By

integrating the probability interpretation of tiy (Eq. (6)) into

the loss function of semi-supervised node classification (Eq.

(5)), the objective function can be reformulated as

L (
p|{y1, y2, ..., y|Vl|}

)
= −

∑
vi∈Vl

log (p(yi|hi)) , (7)

where L (
p|{y1, y2, ..., y|Vl|}

)
denotes that node labels

{y1, y2, ..., y|Vl|} are required to train the GNN ti = p(.|hi)
parameterized by W and b in Eq. (6). After training,

parameters W and b in Eqs (2) and (4) are obtained. Thus

the labels of unlabelled nodes vj ∈ V − Vl can be obtained

from p(y|hj), and the objective function in Eq. (7) can be

extended to

L
(
p, {yj}|V |j=|Vl|+1|{yi}|Vl|

i=1

)

=−
∑
vi∈Vl

log (p(yi|hi))−
∑

vj∈V−Vl

log (p(yj |hj))

=−
∑
vi∈V

F∑
y=1

δ(yi − y) log (p(y|hi)) , (8)

where the term corresponding to the unlabelled nodes,

i.e.
∑

vj∈V−Vl
log (p(yj |hj)), equals to 0 and achieves its

minimum, since yj is obtained from p(y|hj) for unlabelled

nodes. Therefore, semi-supervised node classification is

achieved by interactively optimizing the objective function

in Eq. (8) with respect to the model p(y|h) parameterized

by W and b and node labels {yi}|V |i=1. This process works

if and only if part of node labels {yi}|Vl|
i=1 are known and

utilized to constrain the optimization.

Unfortunately, optimizing this objective function leads to

a degenerate solution if all the nodes are unlabelled. Eq. (8)

can be trivially minimized by training the model to assign

all the nodes into a single class. To prevent this degenerate

solution, constraints must be added to the objective function.

To facilitate it, we first represent the labels as a posterior

distribution q(y|hi) instead of a deterministic Dirac delta

function δ(yi − y), and reformulate Eq. (8) as

L (p, q) = −
∑
vi∈V

F∑
y=1

q(y|hi) log (p(y|hi)) , (9)

where q(y|hi) ∈ {0, 1} and
∑

y q(y|hi) = 1. Note that

q(y|hi) is utilized to denote the posterior distribution of node

vi’s label instead of indicating label y is learned from hi as

p(y|hi). Then, we aim to add some constraints to ensure

nodes being classified into F classes. Since the distribution

of cluster size is unknown, we simply assume that all

nodes are uniformly classified into F clusters of equal size

to prevent the degraded situation where most nodes are

classified into one big cluster. Note that although the equal-

sized clustering doesn’t perfectly meet the ground-truth, it

is an effective way to prevent all the node embeddings

from being too similar. In experiments, the number of

clusters, i.e., F , is set larger than the ground-truth, and

the obtained embeddings are adopted for clustering instead

of the assigned clusters. Thus, the objective function for

unsupervised graph neural network can be written as

argmin
q,p

−
∑
vi∈V

F∑
y=1

q(y|hi) log (p(y|hi)) (10)

s.t. ∀y : q(y|hi) ∈ {0, 1} and
∑
vi∈V

q(y|hi) = N/F,

where the constraint
∑

vi∈V q(y|hi) = N/F makes sure that

there are N/F nodes are assigned to class y, thus all the

nodes are equally partitioned. Unfortunately, this objective

function is difficult to minimize, since it is a combinatorial

optimization problem with respect to q.

B. Unsupervised GNNs as Optimal Transport

In this subsection, to address the difficulty in optimization,

we interpret the objective function of unsupervised graph

neural network, i.e., Eq. (10), with respective to the as-

signment q from the perspective of Optimal Transport. Let

P = [pyi] ∈ R
K×N
+ and Q = [qyi] ∈ R

K×N
+ be the joint

probability matrix estimated from the GNN and the joint

probability of assignment, respectively, where

pyi = p(y, hi) = p(y|hi)p(hi) = p(y|hi)
1

N
, (11)

qyi = q(y, hi) = q(y|hi)p(hi) = q(y|hi)
1

N
. (12)
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The loss function in Eq. (10) can be rewritten as

−
∑
vi∈V

F∑
y=1

q(y|hi) log (p(y|hi)) =< Q,− logP > (13)

where log is an element-wise operation. < A,B >=∑
i

∑
j aijbij is the Frobenius inner product of two matrices.

To alleviate the difficulty of combinatorial optimization

problem with respect to q, matrix Q is relaxed to belonging

to transportation polytope [18] as

U(r, c) := {Q ∈ R
F×N
+ |Q1 = r, QT1 = c}, (14)

where 1 stands for the vector of all ones with appropri-

ate dimensionality. r and c are the fixed vectors used to

constrain the summarizations of Q along row and column,

respectively. Since Q = [qyi] denotes the joint distribution

of label y and node vi, where each column corresponds to

a vertex, c ∈ R
N is set as 1

N 1. According to the equal-

size cluster constraints
∑

vi∈V q(y|hi) = N/F in Eq. (10)

and qyi = q(y|hi)
1
N in Eq. (12), r ∈ R

K is set as 1
F 1,

i.e., c = 1
N 1, r = 1

F 1. Thus, optimizing unsupervised

GNNs in Eq. (10) with respective to the assignment Q can

be relaxed to the following optimal transport problem [18]

argmin
Q∈U(r,c)

< Q,− logP >, (15)

whose solution can be obtained via linear program problem

in polynomial time.

C. Optimization

In this section, an algorithm, which iteratively updates

q and p with another fixed, is proposed to minimize the

objective function of unsupervised GNNs shown in Eq. (10).

If GCN is adopted as the basic GNN, i.e., hi is obtained from

Eq. (2), the obtained unsupervised GNN is OT-GCN, while

OT-GAT denotes that GAT is adopted as the basic GNN,

i.e., hi is obtained from Eq. (4).
1) Updating p with fixed q: If q is fixed, optimizing Eq.

(10) with respective to p, which is parameterized by W and

b, is equivalent to optimizing Eq. (5) or (7), where labels

of all the nodes {yi}|V |i=1 are assumed to have been obtained

from q. It can be achieved via gradient descent as existing

semi-supervised GNNs, such as GCN [5] and GAT [17].
2) Updating q with fixed p: If p is fixed, optimizing Eq.

(10) with respective to q can be achieved via Optimal Trans-

port. By connecting the unsupervised GNNs optimization in

Eq. (10) with respective to the assignment q with the optimal

transport problem in Eq. (15) in Section III-B, assignment

can be obtained via linear programming in polynomial time.

To further speedup this process on large networks, a fast

version of the Sinkhorm-Knopp algorithm [19] is adopted.

It employs a regularization term to the loss function of Eq.

(15) as

argmin
Q∈U(r,c)

< Q,− logP > +
1

λ
KL(Q||rcT ), (16)

Table I
DATASETS.

Datasets Nodes Edges Categories Attributes

Texas 183 328 5 1,703
Cornell 195 304 5 1,703

Cora 2,708 5,429 7 1,433
Citeseer 3,312 4,732 6 3,703
Pubmed 19,729 44,338 3 500

where KL(.||.) stands for the Kullback-Leibler divergence.

rcT ∈ R
K×N , each element of which is 1/(NK), can be

considered as the non-informative uniform prior distribution

of Q. λ balances the convergence speed and the closeness of

Eq. (16) to the optimal transport in Eq. (15). According to

[19], optimizing Eq. (16) is equivalent to optimizing Eq. (15)

with moderate value of λ. By introducing this regularization,

the optimal Q can be analytically obtained as

Q = diag(γ)Pλdiag(β), (17)

where the exponentiation Pλ is element-wise operation. γ
and β are the two vectors used to ensure that the obtained

Q is a probability matrix. diag(.) creates diagonal matrix

from vector. According to [19], γ and β can be iteratively

updated as

γy = [Pλβ]−1
y , βi = [γTPλ]−1

i , (18)

each of which consists of a matrix-vector multiplication with

complexity O(NK). This complexity is linear with the size

of the network. At beginning, β and γ are initialized as c and

r, respectively. In experiments, just a few iterations, which

require only O(NK) operations, are needed to obtain Q.

IV. EVALUATIONS

The experiments are conducted on five commonly utilized

networks. Dataset statistics are summarized in Table I.

A. Baselines

To demonstrate the superiority of our proposed OT-

GNN on representation learning, 7 state-of-the-art baselines

are employed. These methods fall in two categories, net-

work embedding methods and unsupervised graph neural

networks. Network embedding methods include DeepWalk

[20], node2vec [21], LINE [22] and GraRep [23]. The un-

supervised GNNs includes (Variational) Graph AutoEncoder

(VGAE) [9], Adversarially Regularized Graph Autoencoder

(ARVGE) [10] and Deep Graph Infomax (DGI) [12].

Additionally, another 4 state-of-the-art methods, which

directly obtain clustering results without embeddings, are

compared with our proposed OT-GNN in node clustering

task. These methods are all generative models. Degree

Corrected SBM (DCSBM) [24] and Edge enhanced Motif-

aware community detection (EdMot-SC) [25] are only based

on network topology. Latent Dirichlet Allocation (LDA) [26]
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Table II
COMPARISON ON NODE CLUSTERING IN TERMS OF AC AND NMI.

Metrics Methods Cornell Texas Cora Cites. Pub.

AC

DCSBM 37.95 48.09 38.48 26.57 53.64
EdMot-SC 30.77 48.09 27.07 25.60 39.29

LDA 44.62 56.28 37.19 31.34 46.30
Block-LDA 46.15 54.10 25.52 24.35 49.01

DeepWalk 36.05 46.72 45.61 36.21 64.84
Node2Vec 33.85 47.54 56.30 40.76 65.56

LINE 39.49 53.38 30.72 25.01 43.11
GraRep 31.79 36.72 48.29 31.20 54.43

VGAE 36.72 48.35 57.06 53.46 58.64
ARVGE 38.21 41.48 64.08 43.50 58.76

DGI 38.46 51.91 63.51 67.54 64.07
OT-GCN 51.40 63.76 64.62 68.92 66.36
OT-GAT 52.79 64.67 66.70 69.54 67.32

NMI

DCSBM 9.69 16.65 17.07 4.13 12.28
EdMot-SC 9.67 18.79 9.58 11.26 0.21

LDA 21.09 31.29 14.61 9.13 10.55
Block-LDA 6.81 4.21 2.42 1.41 6.58

DeepWalk 7.06 6.16 31.51 10.58 25.55
Node2Vec 6.65 4.49 42.02 12.99 25.02

LINE 9.27 18.16 10.13 5.62 7.17
GraRep 8.80 12.43 35.46 9.61 17.76

VGAE 7.77 8.52 42.92 27.93 17.83
ARVGE 10.26 7.28 44.95 22.72 18.40

DGI 12.52 13.98 49.76 42.74 26.64
OT-GCN 31.66 23.17 50.89 43.74 27.62
OT-GAT 24.16 34.57 52.15 55.61 30.92

is a topic model based on node content. Block-LDA [27] is

based on both topology and node attribute.

To ensure fairness, embedding dimension is uniformly set

to 64 for all the methods on all the datasets. The parameters

of the methods compared are set as what were used by their

authors. All the results of the baseline methods are either

from their original papers or produced by running the codes

from the authors with their default settings.

B. Parameter Settings

In our proposed OT-GNN, Graph Convolutional Network

(GCN) [5], Graph Attention Network (GAT) [17]. and Graph

AutoEncoder (GAE) [9] are employed as basic graph neural

networks and the resulted instances are named as OT-GCN,

OT-GAT and OT-GAE, respectively. The number of clusters,

i.e., F , varies from 10 to 20. Similar to DGI, one-layer

GCN with dimension of output layer as 64 is adopted in

OT-GCN, while one-layer GAT with the number of heads

and the dimension of each head as 4 and 16, respectively,

is adopted in OT-GAT.

C. Node Clustering

The results are shown in Table II. It can be observed

that the two instances of OT-GNN, i.e., OT-GCN and OT-

GAT outperform all other unsupervised GNNs on all the

networks, especially on four webpage networks. OT-GAT

achieves the best performance on all 7 networks in terms of

Table III
COMPARISON ON NODE CLASSIFICATION IN TERMS OF AC (%).

Packages Methods Corn. Texas Cora Cite. Pub.

LibSVM

DeepWalk 38.97 49.18 82.57 52.52 78.79
Node2Vec 35.90 50.27 79.98 61.63 80.30

LINE 43.59 68.85 30.20 41.07 75.47
GraRep 53.33 62.68 73.41 54.28 80.64

VGAE 45.13 55.00 81.05 65.97 83.42
ARVGE 42.56 56.28 80.42 65.10 80.64

DGI 42.56 56.28 80.21 70.07 74.57
OT-GCN 63.02 69.07 82.73 70.65 86.77
OT-GAT 65.91 69.98 83.82 72.62 87.63

LINEAR

DeepWalk 38.46 48.09 82.04 48.42 78.36
Node2Vec 37.95 50.27 80.79 52.44 80.08

LINE 44.10 54.96 50.25 40.56 74.92
GraRep 53.33 59.40 79.83 53.61 80.37

VGAE 45.64 51.91 79.13 69.25 83.81
ARVGE 41.54 59.02 81.24 66.71 80.59

DGI 43.08 56.28 84.71 70.85 78.11
OT-GCN 62.10 68.21 84.60 71.36 86.95
OT-GAT 63.62 69.71 85.52 72.55 88.56

NMI and achieves the best performance on 6 network in term

of accuracy (AC). OT-GAT is slightly lower than recently

proposed TLSC [28], which is a generative model combing

topology and node content, in term of accuracy. This may

attributes to its assumption of inconsistency between topol-

ogy and node attribute, which makes its superiority on large

cluster more remarkable. Factually, the superiority in terms

of NMI indicates our proposed OT-GNN can obtain better

performance on difficult small cluster, since NMI is a fair

metric, which is more sensitive on the small cluster.

D. Node Classification

For node classification, both LibSVM and LibLINEAR

are employed to classify these nodes according to the ob-

tained embedding. On citation network, i.e., Cora, Citeseer

and Pubmed, we adopt the experimental settings in [29],

where 20 nodes per class, 500 nodes and 1,000 nodes are

employed for training, validation and performance evalua-

tion, respectively. For the four medium webpage networks,

including Cornell and Texas, we adopt 20% labelled nodes

for training, 10% labelled nodes for validation, and the other

nodes for testing.

Both OT-GCN and OT-GAT, which are two instances of

our proposed OT-GNN, outperform the state-of-the-art base-

lines on all the 7 networks. These gains are more significant

on four webpages networks, i.e., Cornell, Texas, Washington

and Wisconsin, since the community structures on them

are more clear than network homophily property, which is

the theory basis of GNNs. Besides, the performances of

OT-GAT are better than those of OT-GCN, since OT-GAT

takes expressive GAT [17], which jointly learns mapping

function with parameter W and propagation weights with

parameter b, as basic component. Note that, to the best of
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our knowledge, OT-GAT is the first successful unsupervised

GNN, which takes GAT as basic component. The failure of

adoption GAT in previous unsupervised GNN may attribute

to that it is more likely to lead to overfitting from the

learnable propagation weights in GAT than from the fixed

propagation weights in GCN. Therefore, our proposed OT-

GNN makes it possible to adopt more powerful basic GNNs

without oversmoothing.

V. CONCLUSIONS

To alleviate the oversmoothing issue in unsupervised

graph neural networks (GNNs), a novel Optimal Transport

based unsupervised GNN (OT-GNN) is proposed. It con-

strains the node embeddings to keep their community/cluster

structures to prevent all the node embeddings from becoming

too similar to be distinguished. By imposing the obtained

node embeddings to be classified into clusters of equal size,

OT-GCN performs interactive node embeddings and cluster-

ing. The constrained objective function of the unsupervised

GNN is relaxed to an optimal transport problem, and a

fast version of the Sinkhorm-Knopp algorithm is adopted

to handle large networks. Extensive experiments on node

clustering and classification demonstrate the effectiveness of

our proposed OT-GNN in preventing from oversmoothing.
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