Why Do Attributes Propagate in Graph Convolutional Neural Networks?

Liang Yang'>®, Chuan Wang?*, Junhua Gu'?, Xiaochun Cao?, Bingxin Niu'-

School of Artificial Intelligence, Hebei University of Technology, Tianjin, China
2State Key Laboratory of Information Security, Institute of Information Engineering, CAS, Beijing, China
3Hebei Province Key Laboratory of Big Data Calculation, Hebei University of Technology, Tianjin, China
yangliang @vip.qq.com, {wangchuan, caoxiaochun} @iie.ac.cn, {jhgu_hebut, niubingxin666} @ 163.com

Abstract

Many efforts have been paid to enhance Graph Convolutional
Network from the perspective of propagation under the phi-
losophy that “Propagation is the essence of the GCNNs”.
Unfortunately, its adverse effect is over-smoothing, which
makes the performance dramatically drop. To prevent the
over-smoothing, many variants are presented. However, the
perspective of propagation can’t provide an intuitive and uni-
fied interpretation to their effect on prevent over-smoothing.
In this paper, we aim at providing a novel explanation to
the question of “Why do attributes propagate in GCNNs?”.
which not only gives the essence of the oversmoothing, but
also illustrates why the GCN extensions, including multi-
scale GCN and GCN with initial residual, can improve the
performance. To this end, an intuitive Graph Representation
Learning (GRL) framework is presented. GRL simply con-
strains the node representation similar with the original at-
tribute, and encourages the connected nodes possess similar
representations (pairwise constraint). Based on the proposed
GRL, exiting GCN and its extensions can be proved as dif-
ferent numerical optimization algorithms, such as gradient
descent, of our proposed GRL framework. Inspired by the
superiority of conjugate gradient descent compared to com-
mon gradient descent, a novel Graph Conjugate Convolu-
tional (GCC) network is presented to approximate the solu-
tion to GRL with fast convergence. Specifically, GCC adopts
the obtained information of the last layer, which can be rep-
resented as the difference between the input and output of the
last layer, as the input to the next layer. Extensive experiments
demonstrate the superior performance of GCC.

Introduction

Graph Neural Networks (GNNs) (Wu et al. 2020; Xu et al.
2019) have become a hot topic in deep learning for their po-
tentials in modeling irregular data. GNNs have been widely
used and achieved state-of-the-art performance in many
fields, such as computer vision, natural language processing
(Yang et al. 2020), traffic forecasting, chemistry and med-
ical analysis, etc. Existing GNNs fall into two categories,
spectral methods (Defferrard, Bresson, and Vandergheynst
2016) and spatial ones (Hamilton, Ying, and Leskovec 2017;
Gilmer et al. 2017; Yang et al. 2019b,a; Jin et al. 2019, 2020,
2021).
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Graph Convolutional Network (GCN) (Kipf and Welling
2017), which is a simple, well-behaved and insightful GNN,
bridges above two perspectives by proving that the propa-
gation can be motivated from a first-order approximation of
spectral graph convolutions. Recently progress also demon-
strates the equivalent of spatial and spectral ones (Balcilar
et al. 2020). Many efforts have been paid to enhance GCN
from the perspective of propagation (Gilmer et al. 2017),
such as learnable propagation weights in Graph Attention
Network (GAT) (Velickovic et al. 2018), Gated Attention
Network (GaAN) (Zhang et al. 2018) and Probabilistic GCN
(Yang et al. 2020), structural neighbourhood in Geom-GCN
(Pei et al. 2020) and multi-scale (multi-hop) combination in
N-GCN (Abu-El-Haija et al. 2019a), MixHop (Abu-El-Haija
et al. 2019b), LanczosNet (Liao et al. 2019) and Krylov
GCN (Luan et al. 2019). The common philosophy of them
is: “Propagation is the essence of the GCNNs”. And, the
success of GCNs attributes to the Laplacian smoothing in-
duced by the propagation (Li, Han, and Wu 2018).

Unfortunately, the most serious issue of GNNs is the
over-smoothing, which makes the performance dramatically
drop, caused by the multiple propagations via stacking mul-
tiple graph convolution layers. Recently, (Oono and Suzuki
2020) shows the the exponential loss of expressive power of
GNNs by generalizing the forward propagation of a GCN
as a specific dynamical system. To prevent over-smoothing,
two kinds of methods are proposed. On one hand, meth-
ods in the first category constrain the propagation. Disen-
tangled GCN (Ma et al. 2019) makes each attribute only
be propagated on part of the edges. DropEdge (Rong et al.
2020) randomly removes a certain number of edges from
the input graph at each training epoch to reduce the ad-
verse effect of message passing. On the other hand, meth-
ods in the second category constrain the propagation re-
sult with the original attributes. PageRank-GCN (Klicpera,
Bojchevski, and Giinnemann 2019) integrates personalized
PageRank to GCN to combine the original attribute. JKNet
(Xu et al. 2018) employs dense connections for multi-hop
message passing, while DeepGCN (Li et al. 2019) and (GC-
NII) (Chen et al. 2020) incorporates residual layers into
GCNs to facilitate the development of deep architectures.
However, the perspective of propagation can’t provide an in-
tuitive and unified interpretation to their effect on preventing
over-smoothing.



Table 2: Comparison on transductive node classification in terms of AC (%).

Table 3: Results on PPI.

Methods  Cora Citeseer Pubmed Texas Cornell Wisconsin Chameleon Methods PPI
GCN 81.5 71.1 79.0 521 52.7 458 28.2 GraphSAGE ~ 61.27
GAT 83.1 70.8 785 583 54.3 49.4 429 VR-GCN  97.80

GAT 97.32

PR-GCN 83.3 71.8 80.1 65.4 73.5 69.0 54.3 JKNet 97.61

JKNet 81.1 69.8 78.1 56.4 57.3 48.8 60.1 GeniePath 98.52
DropEdge  83.5 72.7 79.5 57.8 61.6 50.2 61.7 Cluster-GCN  99.33
GCNII 85.5 73.4 80.2 69.4 74.8 74.1 60.6 GCNII 99.53
GCC 86.1 74.3 81.1 71.15 76.44 75.37 61.95 GCC 99.60
GCA 86.3 73.6 81.1 71.62 76.72 74.87 61.27 GCA 99.58

nodes and edges represent web pages and hyperlinks, re-
spectively. Node features are the bag-of-words representa-
tion of web pages. The web pages were manually classified
into the five categories. Chameleon is a page-page network
on specific topics in Wikipedia, where nodes, edges and fea-
tures have the similar meaning as in WebKB. For inductive
learning task, 24 Protein-Protein Interaction (PPI) networks
are employed (Hamilton, Ying, and Leskovec 2017). Dataset
statistics are summarized in Table 1.

Baselines: For transductive learning task, the baselines fall
into two categories. GCN (Kipf and Welling 2017) and GAT
(Velickovic et al. 2018) are two basic models, which may
induce over-smoothing and overfitting. Besides, other 5 re-
cently proposed method to overcome the oversmoothing is-
sue are employed. They are PR-GCN (Klicpera, Bojchevski,
and Gilinnemann 2019), JKNet (Xu et al. 2018), DropEdge
(Rong et al. 2020) and GCNII (Chen et al. 2020). Note that
although edge dropping strategy in (Rong et al. 2020) can
be applied to many other basic model, such as GCN, DropE-
dge is used to represent to the combination of edge dropping
and IncepGCN proposed in (Rong et al. 2020). IncepGCN
is the extension of inception network (Szegedy et al. 2016)
to GNN by combining 1-hop, 2-hop and 3-hop graph con-
volutional operations in one IncepGCN layer. For inductive
learning, in additional to the GAT (Velickovic et al. 2018),
JKNet (Xu et al. 2018) and GCNII (Chen et al. 2020), other
4 state-of-the-art methods, i.e., GeniePath (Liu et al. 2019),
Cluster-GCN (Chiang et al. 2019) GraphSAGE (Hamilton,
Ying, and Leskovec 2017) and VR-GCN (Chen, Zhu, and
Song 2018), are employed.

Parameter Setting: Adam SGD optimizer (Kingma and Ba
2015) is adopted with learning rate as 0.001. Besides, early
stopping with a patience of 100 epochs and ¢, regulariza-
tion (0.0006) is employed to prevent overfitting. v; = 0.1
and x; = 0.2 for transductive learning, while vy, = 0.45 and
k¢ = 0.32 in inductive learning. Similar to GCNII (Chen
et al. 2020) identity mapping is employed to enhance the
learnable mapping W. The number of layers (depth) is se-
lected from 8, 16 and 32. Its impact on performance will be
investigated in the last subsection.

Experimental Results Analysis

Transductive Learning: The fixed split for training, valida-
tion and testing introduced in (Yang, Cohen, and Salakhut-
dinov 2016), i.e., 20 nodes per class for training, 500 nodes

for validation and 1,000 nodes for testing, are adopted for
three citation network Cora, Citeseer, and Pubmed. For each
webpage network, i.e., Chameleon, Texas, Cornell and Wis-
consin, nodes in each class is randomly split into 60%, 20%,
and 20% for training, validation and testing. The results in
term of accuracy (AC) are shown in Table 2. It demonstrates
that our proposed GCC and GCA consistently outperform
the state-of-the-art GNNs. They possess the ability to extract
more information from high-order neighbourhoods. The per-
formance improvement mainly due to the fast convergence
of the conjugate part in GCC. From propagation perspective,
it prevents the over-smoothing caused by inaccurate approx-
imation. The impacts of the depth on performance are given
in the Appendix.

Inductive Learning: Following (Velickovic et al. 2018),
The 24 graphs are divided to 20 graph for training, 2 graphs
for validation and 2 graphs for testing. The results in terms
of F1 score are shown in Table 3. GCC defeats other state-of-
the-art with 8 graph conjugate convolutional layers. It illus-
trates that GCC can effectively combine multi-hop informa-
tion with efficient graph conjugate convolutional operation.
This efficiency may attributes to that graph conjugate convo-
lution integrates the gained information (difference between
output and input) in each graph convolutional layer as shown
in Figure 1(c).

Conclusions

In this paper, the propagation, which induces over-
smoothing issue in Graph Convolutional Network (GCN)
and its variant, is investigated. To this end, an intuitive Graph
Representation Learning (GRL) framework, which simply
constrains the node representation similar with the original
attribute, and encourages the connected nodes possess simi-
lar representations (pairwise constraint), is presented. Based
on GRL, we show that the propagation as well as its weight
learning are not the essence of the GCNSs, but induced by the
numerical optimization of pairwise similarity requirement.
Thus, inspired by the superiority of conjugate gradient de-
scent compared to common gradient descent, a novel Graph
Conjugate Convolutional (GCC) network, which adopts the
obtained information of the last layer as the input to the
next layer, is presented. Extensive experiments on transduc-
tive and inductive semi-supervised node classification task
shows that GCC can enjoy the deep network via effectively
and efficiently multi-hop information combination.
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