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ABSTRACT

Scene graph generation aims to describe the contents in
scenes by identifying the objects and their relationships. In
previous works, visual context is widely utilized in message
passing networks to generate the representations for classifi-
cation. However, the noisy estimation of visual context limits
model performance. In this paper, we revisit the concept of
incorporating visual context via a randomly ordered bidirec-
tional Long Short Temporal Memory (biLSTM) based base-
line, and show that noisy estimation is worse than random.
To alleviate the problem, we propose a new method, dubbed
Progressive Message Passing Network (PMP-Net) that bet-
ter estimates the visual context in a coarse to fine manner.
Specifically, we first estimate the visual context with a ran-
dom initiated scene graph, then refine it with multi-head at-
tention. The experimental results on the benchmark dataset
Visual Genome show that PMP-Net achieves better or compa-
rable performance on all three tasks: scene graph generation
(SGGen), scene graph classification (SGCls), and predicate
classification (PredCls).

Index Terms— Scene graph generation, visual context,
multi-head attention, message passing

1. INTRODUCTION

Scene graph generation is a fundamental visual understand-
ing task, which aims to describe scenes by detecting objects
and predicting the relationships between objects in images.
Because of the rich semantic information provided by scene
graph generation, it can be applied to tasks ranging from basic
ones like multi-label classification [1] and image retrieval [2]
to high-level ones like image captioning [3], visual question
answering [4] and visual reasoning[5].

Based on the studies on relationship detection [6, 7], early
attempts [8, 9] propose to model visual context via message
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Fig. 1. Tllustration of the existing methods for approximat-
ing the visual context in images. The three estimations are:
(a) sequential graph ordered by a certain rule (bounding box
size in this case); (b) fully connected graph; (c) scene graph
estimated from a scoring network. The black arrows repre-
sent the estimated connections that are consistent with ground
truth, while the red ones are wrong predictions.

passing. In some works [10, 11], a scoring network is adopted
to generate “relation proposals” for better context structure
estimations. More recent works [12, 13] focus on the problem
of long-tailed distribution of predicate categories in the Visual
Genome dataset (VG) [14]. However, the performance is still
limited even for the most frequent categories (Recall@ 100
below 50% for SGCls and SGGen on the VG dataset [14]).
This fact shows that there still remains large room for im-
provement on predicting frequent categories [15].

To alleviate the aforementioned problem, we study and
rethink the concept of “modeling visual context”, which has
been widely used in the community rooted in early attempts
[8]. The modeling of visual context is always achieved by
applying pre-defined or estimated graphs to message passing
networks. This means these graphs are regarded as the struc-
ture of the visual context. However, a critical problem is that
the actual structure is not available beforehand, because de-
termining whether two objects are related is also a part of the
task. As illustrated in Fig. 1, existing works consists of three
types of approximations of visual context: fully connected
graph for GNN-based methods [1, 8], sequential graph for
RNN-based methods [9, 12], estimated graph predicted by
an edge scoring network [10, 11]. Apparently, neither pre-
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Fig. 2. Illustration of the framework of the proposed method. For the biLSTM-based baseline, the PMP Module is replaced

with two LSTMs followed by a biLSTM.

defined graph structure nor estimated graph is optimal for
defining the visual context, due to the intra-image variance of
scenes and the label incompleteness of current datasets. We
introduce a strong baseline by modeling the visual context
using LSTMs with random-ordered nodes. The performance
of the baseline is comparable to state-of-the-art, which shows
that there still remains large room for improvement for esti-
mating the visual context.

Based on our analysis, we propose a novel scene graph
generation architecture, Progressive Message Passing Net-
work (PMP-Net), that explores the visual context in a coarse
to fine manner. The PMP module is constructed as follows:
For the first step, visual and semantic information are en-
coded via two separate LSTMs with random ordered graphs
to coarsely model the visual context in a manner of ran-
dom walk. For the second step, a multi-head attention layer
is adopted to further capture visual context by learning the
correlations between all the nodes in a graph.

Unlike previous methods [10, 11] that supervise indepen-
dent visual context estimation networks with ground-truths,
we estimate the visual context implicitly based on the refined
features from the LSTMs. Since object pairs in the images
commonly share subject/object with others, the nodes in the
message passing network for predicate prediction are highly
correlated globally. As a result, we use a multi-head attention
layer, which learns global self-attention, to explore the visual
context for predicate prediction.

Experiments on the VG dataset [14] demonstrate the
efficacy of the proposed PMP-Net. The results show that
the biLSTM-based framework alone obtains superior per-
formance. With the adoption of the PMP module for the
predicate prediction, the performance achieves a further im-
provement.

2. METHOD

In this section, we formulate the task of scene graph gener-
ation in Sec. 2.1, and introduce a strong baseline based on
biLSTM in Sec. 2.2. Finally, we describe the proposed PMP-

Net in Sec. 2.3. Fig. 2 provides an overview of the PMP-
Net: An object detector is used to generate region proposals
and extract the corresponding features. A biLSTM is used for
object classification and a PMP module is used for predicate
prediction.

2.1. Problem Formulation

A scene graph G = (U, E), is used to describe the contents
of a scene. The node set U = (B,0) of the scene graph
represents the objects in the scene, where B and O are the
bounding box set and class label set of the objects, respec-
tively. The edge set E represents the relationships between
objects. The relationship between object ¢ and j is denoted as
a triplet e;; = (05,745, 0;), where r;; € R is the type of the
predicate including “background”, which indicates that there
is no relation between the connected objects.

Scene graph generation (SGG) is the task of generating
the scene graph G from the image /. The probability model
of such a task is formulated as:

P(G|I)=P(B,0,R|I). 1)

2.2. Scene Graph Generation With biLSTM

We construct a framework based on biLSTM as a baseline.
Following [9], SGG with biLSTM decomposes the whole task
of generating the scene graph G into three sequential steps:

P(G|I)=P(B|I)P(O|B,)P(R|B,0,I). (2)

Bounding box prediction. The prediction of bounding
boxes (P(B | I)) is based on an off-the-shelf detection model
(such as Faster R-CNN [16]), which generates region propos-
als B = {by,---,b,}. In addition, the corresponding visual
features for the objects F° = {f?,---, f°} are extracted and
object distributions O¢ are predicted by the detector.

Object classification. Inspired by [17], the object clas-
sification model (P(O | B, I)) concatenates the position fea-
tures, the visual features, and the prior object distributions of
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Fig. 3. The illustration of the proposed Progressive Message
Passing module. The visual feature f;; and semantic feature
s;; are fed into an two separate LSTMs to encode the context.
A multi-head attention layer is then used to calculate the self-
attended features to incorporate the context precisely.

the detected regions, and feeds them into a fully connected
layer. The resulting object features are then refined by a bilL-
STM, and fed into another fully connected layer to make final
predictions. Word embeddings are extracted from the results
of the object classifier.

Predicate prediction. The predicate prediction model
(P(R| B, O, I)) enumerates all possible pairs of subject and
object, and extracts union box feature u;; € R®'2 for each
pair of subject ¢ and object j. The spatial masks of the union
boxes are fed into a sequential of convolution layers and a
global pooling layer to get representations having the same
size as the features of the union boxes. The spatial and visual
features of the union boxes are added to get the features of
the union boxes. The visual features of ¢ and j are concate-
nated with union box features and forwarded into an LSTM.
We then get the visual features f;; of the predicate for ¢ and
j. Similarly, the word embeddings of ¢ and j are concate-
nated and fed into an LSTM to get the semantic features of
the predicates. The visual and semantic features of the pred-
icates are then concatenated and fed into a biLSTM followed
by a Multi-Layer Perceptron (MLP) to get the predicate pre-
diction.

Analysis. The simple and straight baseline achieves su-
perior performance (see Sec. 3.3.1). This result may owe to
the fact that the biLSTM-based framework utilizes the visual
context in a manner of performing random walks on the fully
connected scene graphs. This method incorporates more con-
text information than incomplete estimations of the scenes,
and includes less noise compared to methods using a fully
connected scene graph.

2.3. Progressive Message Passing Network

However, the biLSTM-based framework constrains the de-
gree of a node to be no more than 2, which is inconsistent
with the nature of scene graphs. Also, random connections
between nodes inevitably involve noises. To overcome the
disadvantages, incorporating different types of message pass-
ing methods leads us to a better solution.

As illustrated in Fig 3, we combine the LSTMs with a
multi-head attention layer to better estimate the visual context

for message passing. We define this architecture as a PMP
module, and use it as the message passing network for predi-
cate prediction. The LSTMs encode context information with
noise, while the multi-head attention layer models the visual
context more precisely.

Algorithm 1 The algorithm of PMP-Net
Require: Image set /
B,0%, F° = detector(I)
for each object ¢ do
T — FC(WP;, Wiod, £0)
fe « biLSTM(F;)
0; < FC(fZO)
end for
for each object pair {i,j} do
Uiy < Uij + My
sij  cat(s;, s;)
fij — Cat( iovfggvﬂij)
T — cat(LSTM(sij), LSTM(f”))

©j

> Bounding box prediction
> Object classification

> Predicate predication

Tij <—FC( :J)
end for

Output: B,0 = {01, - ,0m}, R={r1,--- ,mp}

As described in Algorithm 1, the proposed PMP-Net is
conducted as follows. (a) Bounding box prediction. An ob-
ject detector is used to extract bounding boxes B, prior object
distributions O?, and object features F°. (b) Object classifi-
cation. The bounding boxes and prior object distributions are
transformed by linear matrices W and W, respectively. A
fully connected layer F'C is used to encode the concatenated
features of object <. Then, a biLSTM is used to model the
visual context for objects and generate representations for ob-
ject classification. (c) Predicate prediction. The mask and
visual feature of the union box for (i, j) are m;; and u;;, re-
spectively. m,; is fed into a sequence of convolution layers
Conv and added with w;;. The visual features f, f7 and
word embedding s;, s; are encoded by two different LSTMs
respectively. The concatenation of visual feature, word em-
bedding, and union box feature are then further encoded by a
multi-head attention layer M H for more precise visual con-
text modeling. The resulting features are used for predicate
prediction. Finally, we get the scene graph generation result
{B, O, R} by concluding the aforementioned steps.

3. EXPERIMENTS

3.1. Dataset and Settings

Visual Genome (VG) dataset [14] is used to evaluate the pro-
posed method on the scene graph generation task. We fol-
low [9] to get a subset of the VG dataset (VG150), which has
75,651 images in training set and 32,422 images in test set.
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I SGGen SGCls PredCls
etho
R@20 R@50 R@100 R@20 R@50 R@100 R@20 R@50 R@100

IMP [8] 14.6 20.7 24.6 31.7 34.6 354 52.7 59.3 61.3
Graph R-CNN [10] - 11.4 13.7 - 29.6 31.6 - 54.2 59.1
MotifNet [9] 21.4 27.2 30.3 329 35.8 36.5 58.5 65.2 67.1
MotifNet-Freq [9] 20.1 26.2 30.1 29.3 32.3 32.6 53.6 60.6 62.2
VCTREE [11] 22.0 27.9 313 35.2 38.1 38.8 60.1 66.4 68.1
KERN [18] - 27.1 29.8 - 36.7 37.4 - 65.8 67.6
CMAT [19] 22.1 27.9 31.2 35.9 39.0 39.8 60.2 66.4 68.1
NODIS [17] 21.6 27.7 31.0 37.7 41.7 42.9 58.9 66.0 67.9
biLSTM 21.7 27.5 30.9 37.8 41.9 42.9 58.3 65.5 67.6
PMP-Net 22.3 28.0 31.2 38.5 42.5 43.5 58.6 65.7 67.6

Table 1. Comparison on the test set of VG150 [9] with graph constraint. For a fair comparison, all the compared methods
share the same object detector [16] with VGG16 [20] as the backbone. “biLSTM” is the biLSTM-based baseline described in

Sec. 2.2. The bold numbers represent the best results.

The most frequent 150 object categories and 50 predicate cat-
egories are selected.

Following [9], the task of scene graph generation is eval-
uated on three sub-tasks:

1) Predicate classification (PredCls): predict the types
of predicates for the object pairs given ground truth
bounding boxes and object labels;

2) Scene graph classification (SGCls): predict object la-
bels and predicate labels given ground truth bounding
boxes;

3) Scene graph generation (SGGen): predict the bound-
ing boxes and labels of the objects, and classify the re-
lationships for the object pairs.

Evaluation. The bounding boxes of a subject and an ob-
ject should have more than 50% IoU with the ground truth.
A relationship prediction is regarded as correct only when the
corresponding object pair and the predicate are classified cor-
rectly at the same time. All the relationship prediction can-
didates are ordered according to the prediction confidences
of the objects and predicates. For each sub-task, recall@K
(R@K) is used as the evaluation metric.

3.2. Implementation Details

For a fair comparison, the object detector used in this paper
is Faster R-CNN [16] with VGG16 [20] as the backbone by
default. We use the vanilla cross entropy loss for training the
models. Following [9], we resize the input images to 592 x
592. A ROIAlign layer followed by a global average pooling
layer is used to extract visual features for object proposals and
their union boxes. For all three tasks, models are warmed up
with a learning rate of 10~3 for 5 epochs, and further trained
with a learning rate of 10~%. When the model plateaus for the
first time, the learning rate will be further divided by 0.1.

3.3. Quantitative Results and Comparison

The comparison results with the proposed method are shown
in Table 1. We compare PMP-Net with previous methods that
share the same detector backbone (VGG16 [20] for Faster R-
CNN [16]) with it. Considering the graph constraint, PMP-
Net shows a state-of-the-art on SGGen and PredCls, whose
results have not been improved significantly since [9]. For
SGCls, PMP-Net relatively improves state-of-the-art (NODIS
[17]) 2.1%(SGCls-R@20), 1.4% (SGCls-R@50) and 1.4%
(SGCIs-R@100).

3.3.1. Ablation Studies

In order to certificate the effectiveness of the proposed PMP-
Net, we analyze the impact of using different message pass-
ing networks for predicate prediction. In Tab. 1, “biLSTM”
means the biLSTM-based framework described in Sec. 2.2.
We can find that replacing the biLSTM with a multi-head at-
tention layer has positive impacts on all three tasks. The good
results suggest that the two steps of context modeling are able
to complement each other. Also, the simple biLSTM-based
baseline shows a similar performance to a prior state-of-the-
art method [17].

4. CONCLUSION

This paper revisits the concept of visual context in scene
graph generation and contributes to understanding how the
visual context is utilized. Motivated by the analysis, we intro-
duced a strong baseline and further improved it by exploring
the visual context from coarse to fine. Experimental results
show that while the baseline achieves superior results, the
proposed method provides additional gains over it and gets
up to 2.1% relative improvements over state-of-the-art.
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