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Abstract—Crowd counting, which aims to predict the number
of persons in a highly congested scene, has been widely explored
and can be used in many applications like video surveillance,
pedestrian flow, etc. The severe mutual occlusion among person,
the large perspective distortion and the scale variations always
hinder an accurate estimation. Although existing approaches have
made much progress, there still has room for improvement.
The drawbacks of existing methods are 2-fold: (1)the scale
information, which is an important factor for crowd counting,
is always insufficiently explored and thus cannot bring well-
estimated results; (2)using a unified framework for the whole
image may result to a rough estimation in subregions, and thus
leads to inaccurate estimation. Motivated by this, we propose
a new method to address these problems. We first construct
a crowd-specific and scale-aware convolutional neural network,
which considers crowd scale variations and integrates multi-scale
feature representations in the Cross Scale Module (CSM), to
produce the initial predicted density map. Then the proposed
Local Refine Modules (LRMs) are performed to gradually re-
estimate predictions of subregions. We conduct experiments on
three crowd counting datasets (the ShanghaiTech dataset, the
UCF_CC_50 dataset and the UCSD dataset). Experiments show
that our proposed method achieves superior performance com-
pared with the state-of-the-arts. Besides, we conduct experiments
on counting vehicles in the TRANCOS dataset and get better
results, which proves the generalization ability of the proposed
method.

Index Terms—crowd counting, scale variation, density map,
mean absolute error

I. INTRODUCTION

Crowd counting, which aims to obtain an accurate number
of a highly congested scene, has attracted more attentions. It is
widely used in public safety aware places such as pedestrian
street, train station, etc. When faced with a crowded scene,
which holds complicated environmental conditions like serious
occlusion, large perspective distortion, and scale variations on
people (as is shown in Fig. 1), it is more challenging to obtain
an accurate count. Generally, researches trending for this field
usually obtain a density map, which provides weak location
information about crowd distribution.

Traditional detection-based methods [1], [2] cast the count-
ing problem as a detection task and use sliding windows to
detect body parts. It suffers a lot when facing crowded scenes,
where mutual occlusion occurs. Recently, researchers adopt
different deep Convolutional Neural Network (CNN) to regress
density map [3]-[8], [11]. They address issues in a flow.

Fig. 1.
[3]. The serious occlusion, large perspective distortion, and scale variations
among people throw a great challenge to obtain an accurate count in congested
scenes.

Visualization of some images and density maps on ShanghaiTech

Firstly, they design an architecture to capture representative
crowd features. Then a whole image or image patches are de-
livered into the network to obtain the density map. Finally, the
predicted density map is employed to calculate the count. To
the best of our knowledge, most existing methods concentrate
only on the quality of count rather than that of density map.
Compared to obtaining a precise count, these methods pay less
attention to generate an accurate density map that is used to
count. They ignore that only if a more accurate density map
is predicted, a more precise count is obtained.

Based on this observation, we focus on two issues which
are ignored before. (1) The scale variation of person, which
means the number of pixels corresponding to a person varies
a lot in the same image captured by same camera, is obvious
especially in crowded scenes. However, the scale information,
which is an important factor for crowd counting, is always
insufficiently explored and thus cannot bring well-estimated
results. (2) A unified framework for the whole image may
result to a rough estimation in some subregions of density
map. For example, the irregular spatial distribution of crowd
may lead to the inaccurate estimation. Therefore, for a unified
framework, it would be too hard to take care both congested
regions and sparse regions at the same time.

In this paper, we propose a novel architecture to estimate
an accurate density map. We address the aforementioned
two drawbacks by exploring scale information to ease scale
variations and deploying refine modules into density map
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estimation to obtain precise local prediction. Specifically,
firstly, we use the Density Feature Generator (DFG) to pro-
duce crowd-specific representations covering large receptive
fields. Then the Cross Scale Module (CSM) is adopted to
incorporate the multi-scale context information into the density
map estimation as well as outputs an initial density map.
Finally we propose the Local Refine Module (LRM) and
use multiple LRMs to gradually refine the subregions of the
initial density map. Owing to the novel architecture, the three
modules work together to generate a more accurate density
map and lower Mean Absolute Error (MAE). We conducted
extensive experiments on three crowd counting datasets (the
ShanghaiTech dataset [3], the UCF_CC_50 [13] dataset, and
the UCSD [14] dataset). Fig. 2 shows the overview architecture
of proposed method.

The rest of paper is structured as follows: Sec. II concludes
previous works on crowd counting as well as their limits. Sec.
IIT introduces our proposed method and network architecture
in detail. Sec. IV lists several counting datasets and the
analysis of results on these datasets. The ablation studies
are also performed to evaluate the effectiveness of proposed
components. Finally we conclude our work in Sec. V.

II. RELATED WORKS

Crowd counting in images [3], [8] and videos [34]-[36] is
a popular field among researchers. Counting algorithms are
roughly divided into three categories: counting by detection
[1], [2], counting by regression [17], [18] and counting with
CNN [3]-{8], [11].

A. Detection-based Methods

Detection-based approaches [1], [2] of crowd counting
sequentially conduct human detection and count the detec-
tion results as the final number. They use manually crafted
descriptors such as HOG [1] to represent human and use
slide windows to detect human parts such as arm, head, etc.
Since detection based methods [1], [2] usually detect people
directly and then count, they suffer a lot when facing with
more crowded scenes, where people may be seriously occluded
by each other and even be seen as a bunch of blobs. With this
large scale variation among crowds, obtaining general people
representations and directly counting by detection cannot offer
satisfactory results.

B. Regression-based Methods

When faced with congested scenes, where occlusion and
cluster happen a lot, detection-based methods cannot work
well. As a result, researchers propose to regress the mapping
function between image characteristics and total counts [37]—
[39] or object density [17], [18]. Haroon et. al. [40] lever-
age multiple sources of information such as head detection,
texture elements and frequency domain analysis to compute
an estimation of the number of individuals presented in an
extremely dense crowd. However, approaches that directly
regress the total count discard the localization information,
which is important to model crowds. Besides, they suffer a
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lot from background noises. Thus, these group of approaches
usually need large amounts of training data and behave poorly
when lacking data.

[16] evades the difficulty of the detection task via estimat-
ing an image density whose integral over any image region
gives the count of objects within that region. Based on the fact
that the linear mapping function is hard to obtain, [12] builds
the random forest regressors to learn a non-linear function.

C. CNN-based Methods

Recently, density map estimation via CNN has occupied the
mainstream. Based on the fact that CNN has the ability to ex-
tract powerful representations of images, it becomes extremely
useful in image classification [19], [20], object detection [21],
[22] as well as segmentation [23], etc. It’s a good choice
to adopt CNN to conduct crowd counting task [3]-[8], [11].
Researchers project the dotted people location ground truth to
a spacial-aware density map and learn to predict the density
map through a powerful CNN. The most common practice is
to employ single or multiple neural networks to obtain density
maps in an end-to-end manner.

The single-column structure tends to extract crowd-specific
and representational features while multi-column structure
uses different kernel sizes to handle scale variations. CSRNet
[11] adopts a single-column structure. It uses the VGG [19]
based network as the frontend to extract features and a dilated
CNN to enlarge the receptive fields and regress density maps.
MCNN [3] is a typical multi-column structure and it addresses
scale variations via 3 parallel channels with different kernels
to capture different receptive fields. The count is calculated by
summing all the values in estimated density map. Switch-CNN
[4] consists of 3 CNN regressors with different kernel sizes of
convolution layers. A switch classifier is used to automatically
link the image to the best CNN regressor. Cascaded-MTL
[7] incorporates a classification network into the density map
estimation network by learning to classify images to various
groups based on the count. CP-CNN [6] tries to generate
high-quality density maps by incorporating the global and the
local context information, along with density map information
into Fusion-CNN [6]. SANet [5] encodes multi-scale features
based on multiple scale aggregation modules and decodes the
features with a set of transposed convolution layers. ACSCP
[9] designs a U-net [10] structured generation network and an
adversarial loss is employed to shrink the solution onto a real-
istic subspace. It also designs a scale-consistency regularizer
to enforce that the sum of crowd counts from local patches
equals to the overall count of their region union. Haroon et.
al. [46] address the crowd counting, density map estimation
and localization in dense crowds by inviting a new composition
loss. [45] exploits unlabeled data in CNN to improve counting
by self-supervised learning to rank.

III. METHODS

The main idea of the proposed framework is that we want to
efficiently mine scale information and refine the density map
that may have high estimation error.
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Fig. 2. Overview of the proposed network. Our architecture consists of 3 components. The Density Feature Generator (DFG) provides crowd-specific
representations covering large receptive fields. The Cross Scale Module (CSM) provides multi-scale context information about the input image and offers the
initial density map. The Local Refine Module (LRM) is proposed to correct density estimation of subregions that may be roughly predicted. In LRM, the
Refine Network (RN) is a 3-channels CNN with different convolutional kernel sizes to re-estimate sampled subregion. Then the corresponding subregion in
the input density map is replaced by the re-estimated subregion density map. The parameters are shared among LRM.

Motivated by this, we propose our solution to address
aforementioned drawbacks in Sec. I. Our proposed architecture
consists of 3 components. That is, the Density Feature Gen-
erator (DFG) provides crowd-specific representations covering
large receptive fields. The Cross Scale Module (CSM) provides
multi-scale context information about the input image and
offers the initial density map. The Local Refine Module (LRM)
is proposed to correct density estimation of subregions that
may be roughly predicted.

A. Network Configuration

1) Density Feature Generator: Researchers are devoted to
mine finer features through deeper network, such as ResNet-
101 [20], DPN-131 [31]. Our proposed DFG is a simple yet
powerful base network intended to generate crowd-specific
features. We use the 13 layers of the VGG-16 [19], which
contains 10 convolution layers to extract features and 3 max
pooling layers to shrink the size to 1/8 of original resolution.
ReLU activation functions are used to increase the non-linear
representation capability.

Besides, 6 dilated convolution layers [24] are placed behind
VGG-16 [19] layers in order to increase receptive fields as
well as capture more contextual information. The dilated
convolution [24] is first applied in semantic segmentation [25],
[26]. It allows exponential increase in the field of view without
decrease of resolution caused by pooling operations. A 2-D
dilated convolution can be expressed as:

M N
y(m,n) = sz(m—Fr xi,n+rx jw(i,j), @
=1 j=1

where z(m,n) represents pixel location, y(m,n) represents
output result, w(%,j) stands for the filter parameters and M,
N is the width and height of z, respectively. Compared to
the normal 2-D convolution operation, the dilated convolution
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introduces a parameter 7, which is named as the dilation
rate. When r = 1, it equals to a normal 2-D convolution.
The detail architecture of DFG is shown in Table. 1. In our
network, DFG is used to output the 64 channels crowd-specific
representations of the image for later use.

2) Cross Scale Module: Previous state-of-the-art ap-
proaches usually design a Deep Neural Network (DNN) to
conduct crowd counting. Due to the scale variations among
real-world crowd scenes, it would be tough for these methods
to adapt to both crowded and sparse scenes. One of the
possible explanations is that the scale information, which is an
important factor for crowd counting, is always insufficiently
explored and thus cannot bring well-estimated results. Inspired
by the success of the Inception Network [27]-[30] in image
classification, we address this problem by adding a CSM
behind DFG, which aims to capture multi-scale context infor-
mation. It is composed of 4 convolutional branches holding
different kernel sizes. The first branch is convolved with a
kernel having 1*1 size, which is designed to preserve infor-
mation from the former layer. The other three branches use
kernels having sizes of 3*3, 5*5, 7*7 respectively, to capture
response from different scales. Then, these three branches are
followed by a convolution layer with kernel size 1*1 to reduce
the dimension of the channel to 1. Finally, the four feature
maps are then concatenated and then convolved with a 1*1
kernel to produce the initial density map. Fig. 3 shows the
architecture.

3) Local Refine Module: Another drawback of previous
state-of-the-art methods is that the estimated density map may
be too rough in certain subregions and often cause large esti-
mation errors compared to sparse regions. The reason is that a
unified framework cannot take care both crowded regions and
sparse regions at the same time, they tend to over-estimate the
count of sparse regions. We propose to address the problem



TABLE I
THE ARCHITECTURE OF DFG. THE CONVOLUTION LAYER IS EXPRESSED
AS CONV(KERNEL SIZE, NUMBER OF FILTERS, DILATION RATE).

Convolution layer Feature map size
conv(3, 64, 1)
Hx W x 64
conv(3, 64, 1)
Max Pooling 12
conv(3, 128, 1) How
conv(3, 128, 1) 2 2
Max Pooling 12
conv(3, 256, 1)
H w
conv(3, 256, 1) T X7 x128
Density conv(3, 256, 1)
Feature Max Pooling 2
Generator conv(3, 512, 1)
conv(3, 512, 1) T x W x 256
conv(3, 512, 1)
Dilated Convolution layer
conv(3, 512, 2
¢ ) g x ¥ x512
conv(3, 512, 2)
conv(3, 512, 2)
conv(3, 256, 2) % X % x 256
conv(3, 128, 2) g x ¥ x128
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Fig. 3. Overview of the Cross Scale Module (CSM). It is composed of 4
convolutional branches holding different kernel sizes to capture the responses
from different scales. All filters are padded to ensure the size of output will
not change.

as follows: firstly, we randomly sample a one forth subregion
of the estimated density map from CSM, then the sampled
subregion is refined through a proposed Refine Network (RN).
The RN is composed of 3 branches, each of which consists of 6
convolutional layers with different kernel sizes. The outputs of
3 branches are concatenated to produce the re-estimation of the

186

cony

48

conv
7x7

conv
Tx7

convy
Tx7

conv|
1x1

patch
refined

conv conv conv patch

conv
7x7

conv
9x9

9x9 9x9 7x7

Fig. 4. Overview of the Refine Network (RN). The RN is proposed to correct
the density estimation of subregions that may be roughly predicted. It is a
3-branches CNN with different convolutional kernel sizes to re-estimate the
sampled subregion. All filters are padded to ensure the same size as the former.

subregion. Then, the difference between the re-estimation of
the ground truth is fed into the RN to refine the re-estimation.
The overview of the RN is shown in Fig. 4. Here all filters
are also padded to ensure the same size as former. After that,
the refined density map of the subregion takes place of that in
the previous density map produced by CSM.

B. Training With DFG And CSM

The DFG and the CSM are jointly trained in an end-to-end
manner with the following Euclidean loss:

N
Loss =Y |DfT — DY||?, )

=1

where N is number of pictures, D? is the initial density
map estimated by CSM and DfT is ground truth for image
I;. We use the Pytorch [32] framework and the Stochastic
Gradient Descent (SGD) as an optimizer with learning rate
varying in different datasets(i.e. 105 on the ShanghaiTech
[3] and the UCF_CC_50 [13], 10~% on the UCSD [14] and
the TRANCOS [15]). Since the image resolution differs, we
set the batch size to 1 and use the whole image as well as
image patches during the training stage. The image patches
are randomly sampled from the whole image with 1/4 of the
original size. The estimation is performed on the whole image
in the testing stage.

C. Training with LRM

After obtaining the initial density map generated by CSM,
we froze the parameters of DFG and CSM and train LRM
only.

As the backward traditional pixel-wise Euclidean loss de-
pends on the magnitude of deviation of the certain pixel,
it tends to incentivize a blur when it confronts sharp edges
and outliers [9]. We combine the Structural Similarity In
Image (SSIM) loss and Euclidean loss together to overcome
this issue. The SSIM index is proposed to measure the local
consistency of the generated density map and its ground truth,



which is widely used in the image quality assessment task. The
value of SSIM varies from -1 to 1 and equals to 1 only if the
two images are identical while O if no structural similarity.
It evaluates the image quality from three statistics: mean,
variance and covariance. It is expressed as

Quxpy + C1)(20xy + C2)
(W% + ¥ +c1)(ok + o3 +c2)’
where px and 0% are the mean and the variance estimation
of X, and o xy represents the covariance estimation. c; and c

are small constants to avoid division by zero. Then, we define
the SSIM loss for a pair as:

SSIM(X,Y) = 3)

1 - SSIM(DST,D;)

Lssim(DfL‘GTy Dz) = lg 2 (4)
Finally, the LRM is trained with:
N K
Loss =Y Y ax|DFT — Df|? + BLesim(DST, DY),
i=1 k=1
(5)

where DY is the refined density map obtained by k-th LRM, K
is the number of employed LRMs, o and 3 are constant values.
We set o to 0.2 and 3 to 0.01, K = 5 on ShanghaiTech [3]
and UCF_CC_50, K = 1 on UCSD [14] and TRANCOS [15].
The parameters are shared by K LRMs. During each step, a
subregion is randomly sampled from previous density map and
then refined by RN. After that, the refined subregion of density
map takes the place of the previous one. The visualization of
the re-estimated density map by each LRM is shown in Fig.
5. With the efforts of these procedures, our estimated density
map becomes accurate gradually.

IV. EXPERIMENTS

In this section, we make experiments to compare with
the state-of-the-art methods on three widely explored crowd
counting datasets: the ShanghaiTech [3], the UCF_CC_50 [13]
and the UCSD [14] datasets. We also conduct experiments on
a vehicle counting dataset, the TRANCOS [15], to illustrate
the generalization ability of the proposed method on counting
other objects. Results show that our proposed method achieves
5.4% lower Mean Absolute Error(MAE) on the ShanghaiTech
[3] dataset, 20% lower MAE on the UCF_CC_50 [13] dataset,
compared to state-of-the-art methods. We get a 18.3% lower
MAE on the TRANCOS [15] dataset. The ablation study is
also performed to evaluate the effectiveness of our proposed
components.

A. Evaluation Metrics

To evaluate the accuracy of the estimated density map, we
use the following metrics: Mean Absolute Error (MAE) and
Mean Squared Error (MSE), which are defined as:

N
— 1 GT _ A,
MAE = N;:l:nci Gill, (6)
1 N
MSE = |~ GT _ |2
S N;:l: |CET — G2, o)
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(b) GT density map

(c) Initial density map (d) Refined_1

(g) Refined_4

Fig. 5. Visualization of re-estimated density map and corresponding counts
by each LRM on ShanghaiTech [3].

(h) Refined_5

where C; represents the predicted count from the estimated
density map DX of image I; and CS7 represents the corre-
sponding ground truth count.

B. Ground Truth Generation

Since the counting network usually estimates the density
map, it’s of vital importance to generate the ground truth
density map for each image. Considering that the label of a
crowd image is made up of the coordinates of head centers,
here we use a delta function §(x — x;) to represent a head
centered at x;. Thus a labeled image with M heads inside at
x is expressed as:

M
H(x) = Z 8(x —x;). ®)

Following with the previous method [3], we convert the
coordinate annotations to the corresponding density map by



TABLE II
THE PARAMETER SETTINGS FOR DIFFERENT DATASETS.

Dataset

Generating method

ShanghaiTech Part A [3]
ShanghaiTech Part B [3]
UCF_CC_50 [13]
UCSD [14]

Geometry-adaptive kernels

Geometry-adaptive kernels

Geometry-adaptive kernels
Fixed kemnel, o = 3

— =t n R

TRANCOS [15] Fixed kernel, 0 = 3

convolving with a Gaussian kernel G, [33]. The ground truth
density map at x is calculated through:

M
D (x) = " 5(x — x;) * Gy, ©)
i=1

where 0; = ﬂa" and d is the average distance to its k nearest
neighbors. Following the previous work [3], we set k to 3 and
B to 0.3. For each coordinate located at x, it is convolved
with the Gaussian kernel with the standard deviation o; that
is proportional to d. By far, the pixel associated with x;
corresponds to an area with a radius proportionated to d.In
order to work well with sparser datasets like the UCSD [14],
we fix the kernel for all image. The detailed setting of o is
shown in Table. II. Once we obtain the density map, the crowd
count is obtained through

h w
C;i=Y_Y D(,j),

i=1 j=1

(10)

where h and w represent the height and the width of density
map, respectively.

C. Data Augmentation

Since some datasets have limited number of images(e.g. the
UCF_CC_50 [13] contains only forty images for training and
ten images for testing), it is necessary to use some tricks to
enrich the training data. During the training stage, we use the
whole image and patches that randomly sampled with 1/4 of
original resolution. A random flip operation is made to double
the training set. During the inference stage, the whole image
is delivered into the network.

D. Datasets And Settings

» ShanghaiTech The ShanghaiTech [3] dataset, which con-
tains 1198 annotated images with a total of 330,165
people with centers of head annotations, is a widespread
dataset in the crowd counting fields. It consists of two
parts: part A with 300 images for training and 182 images
for testing; part B with 400 images for training and
316 images for testing. We use the Stochastic Gradient
Descend (SGD) as the optimizer with an initial learning
rate 10~5. Data augmentation is used to go a step further.
We deploy 5 LRMs to refine the initinal predicted density
map step by step and the parameters are shared among
LRMs. By the way, due to the existence of random
sampling in the LRM, there exists slight difference when

188

STATISTICS OF DATASETS

TABLE III

Dataset Number | Average Count Statistics
of images| Resolution | Total |Min|Max| Avg
ShanghaiTech Part_A [3]| 482 589 x 868 (241,677| 33 |3139| 501
ShanghaiTech Part B [3]| 716 768 x 1024 | 88,488 | 9 | 578 | 123
UCF_CC_50 [13] 50 2101 x 2888| 63,974 | 94 (4543|1279
UCSD [14] 2000 158 x 238 (49,885 | 11 | 46 | 25

we perform the inference at each time. As a result,
to reduce the differences and make the results more
convincing, we repeat the testing step 50 times and take
the average counts as the final reports.

UCF_CC_50 The UCF_CC_50 [13] dataset contains 50
images collected from the Internet. It is a very challenging
dataset because the head counts of each image vary from
94 to 4543, with an average number of 1279 head counts
per image. The number of overall head annotations is
63974. A 5-fold cross-validation step is performed on
this dataset. Considering that the test set is relative small
and the random operation is introduced in our method,
we infer 100 times per image and take an average MAE
and MSE as the final results. We deploy 5 LRMs similar
to ShanghaiTech [3].

UCSD The UCSD [14] dataset contains 2000 images
captured by surveillance cameras. It is sparser when com-
pared with the UCF_CC_50 [13] and the ShanghaiTech
[3]. The count of each image varies from 11 to 46. We
conduct experiments on this dataset to prove the strong
generalization capability of the proposed method. Since
the dataset is sparser than the ShanghaiTech [3] and
the UCF_CC_50 [13], we deploy only 1 LRM to re-
estimate the density map. Based on the fact that the image
resolution is relative small (only 158x238), it would be
difficult to directly deliver the images into our network,
which contains 3 max pooling layers and outputs a 1/8
size feature map compared with the original input (as
listed in Table. I). As a result, we resize the images
into 632x952 by using the bilinear interpolation before
delivering into our network. In addition, we mask all
images and the corresponding ground truth maps by the
Region-Of-Interest (ROI) map. For a quick comparison
of these datasets, please refer to Table. III.

TRANCOS Apart from the aforementioned three crowd
counting datasets, we evaluate our method on a vehicle
counting dataset named TRANCOS [15] in order to
demonstrate the generalization capability and practical
applications. The TRANCOS [15] dataset contains 1224
traffic jam images captured by surveillance cameras cov-
ering different scenarios. It has 46796 annotated vehicles
with ROI map provided. We deploy 1 LRM similar to the
UCSD [14] dataset. Following the previous work [15],
we use the Grid Average Mean Absolute Error(GAME)
as the measurement. The GAME metric is introduced to
provide a more accurate evaluation. Different from the
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Fig. 6. Visualization of some images and their ground truth and predicted density maps in ShanghaiTech [3]. First column: original images. Second column:
ground truth. Third column: initial density map. Forth column: refined density map.

TABLE IV
COMPARISON BETWEEN CURRENT METHODS AND OUR PROPOSED
METHOD ON THE SHANGHAITECH DATASET [3].

PartA PartB
Methods MAE | MSE | MAE | MSE
MCNN [3] 1102 | 1732 | 264 | 413
Cascaded-MTL [7] | 1013 | 1524 | 200 | 31.1
Switch-CNN [4] | 904 | 1350 | 216 | 334
ACSCP [9] 757 | 1027 | 172 | 274
CP-CNN [6] 736 | 1064 | 201 | 30.1
CSRNet [11] 682 | 1150 | 106 | 160
SANet [5] 670 | 1045 | 84 | 13.6
Liu et al. [45] 720 | 1066 | 137 | 214
ours 644 | 976 | 101 | 156

MAE, the GAME metric takes object counts as well as
object locations into consideration. For a specific level L,
it subdivides the image into 4 (L=0,1,2,3, respectively)
non-overlapping regions and calculates the MAE in each
region. It is defined as follows,

N 4%
1 N
GAME(L) =+ > > ICi=Cil,  an
i=1 [=1

where C‘é is the estimated count in a region [ of image i,
C! is the corresponding ground truth for the same region
of image i. When L = 0, it equals to the MAE. The
GAME is a restrict evaluation metric for that the higher
L, the more subregions are divided.
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TABLE V
COMPARISON WITH CURRENT STATE-OF-THE-ART METHODS ON THE
UCF_CC_50 [13] AND THE UCSD [14] DATASETS.

UCF_CC_50 [13] | UCSD [14]
Method MAE | MSE | MAE | MSE
MCNN [3] 3776 | 5091 | 107 | 135

Cascaded-MTL [7] | 322.8 | 3414 - -
Switch-CNN [4] | 318.1 | 4392 | 162 | 210
ACSCP [9] 2010 | 4046 | 1.04 | 135

CP-CNN [6] 2958 | 3209 - -
CSRNet [11] 261 | 3975 | 116 | 147
SANet [5] 2584 | 3349 | 102 | 129
Livetal [45] | 2796 | 3976 | 117 | 155
ours 2067 | 2768 | 110 | 139

E. Quantitative Results And Analysis

Table. IV shows the comparison with previous state-of-
the-art methods on the ShanghaiTech [3], which proves the
effectiveness of our new architecture on the crowd counting
task. As it is shown in Table. IV, we get a 64.4 of MAE and
97.6 of MSE on part A, which both outperform the current
state-of-the-art method SANet [5] by 5.4% lower MAE and
6.6% lower MSE. Fig. 6 shows some visualization of images
and their corresponding predictions of our method on the
ShanghaiTech [3].

Compared to the ShanghaiTech [3] dataset, the UCF_CC_50
[13] is more challenging. Table. V shows the results, from
which we observe that our proposed method surpasses the
current state-of-the-art method SANet [5] with large margins



Fig. 7. The visualization of some masked images and density maps on the TRANCOS [15] and the UCSD [14] datasets. First row: examples from TRANCOS
[15] and UCSD [14]. Second row: the ground truth density maps (60.8, 61.8, 67,0, 19.0, 40.6, 17.0). Third row: the predicted density maps (65.7, 70.0, 70.3,
18.9, 41.0, 17.3).

TABLE VI

RESULTS ON TRANCOS [15] DATASET.

GAME Metric
Method L=0[L=1]L=2[L=3
Fiaschi [41] et al. 17.77 | 20.14 | 23.65 | 25.99
Lempitsky et al. [42] | 13.76 | 16.72 | 20.72 | 24.36
Hydra-3s [43] 1099 | 13.75 | 16.69 | 19.32

FCH-HA [44] 421 - - -

CSRNet [11] 3.56 5.49 8.57 15.04
ours 291 6.23 11.51 | 1491

(i.e. 20% lower MAE and 17.3% lower MSE). Since the
UCF_CC_50 [13] dataset has large scale variations among
people, our proposed CSM handles these kind of scale vari-
ations easily. Further more, the UCF_CC_50 [13] dataset has
more congested areas, which result to higher probability of
estimating high estimation errors on those dense subregions
by previous methods. Different from them, our proposed LRM
is intended to address this problem and has positive impacts
on decreasing MAE of areas with high estimation errors.
In comparison, SANet [5] adopts several scale aggregation
modules to encode features, which is not powerful than the
DFG module proposed in this paper. Besides, SANet [5] lacks
refinements of the density map, which is our key point since
the UCF_CC_50 dataset has more congested regions.

As is illustrated in Table. V, when faces with sparse scenes
in UCSD [14], we have a competitive results compared to
SANet [5]. It is obvious that our proposed method works well
both on congested scenes and sparse scenes. That is, it is robust
to density variations.

Table. VI lists our results on the TRANCOS [15] dataset.
We surpass all previous methods when L = 0 and L = 3. It
is glad to see that our method has a good generalization capa-
bility of transferring to count other objects such as vehicles.
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FE. Ablation Studies

We conduct the experiments on two datasets (the Shang-
haiTech [3] part A and the UCF_CC_50 [13]) to evaluate the
effectiveness of our proposed modules. Considering the DFG
aims to generate density features of the input image, we add
an output layer consisting of one convolution layer with the
kernel size 1 to generate the density map. After obtain the
baseline, we gradually add other proposed modules, results
are shown in Table. VII.

TABLE VII
THE ABLATION STUDIES OF PROPOSED MODULES ON THE UCF_CC_50
[13] AND THE SHANGHAITECH A [3] DATASETS.

UCF_CC_50 [13] | ShanghaiTech [3]
Method  —orF T MSE | MAE | MSE
bascline | 2395 | 3214 | 670 | 1050
+CSM 2142 | 3079 | 657 | 1007
+CSM4LRM | 2067 | 2768 | 644 | 976

o The effectiveness of the DFG. The DFG is a simple
yet powerful network structure that intended to generate
crowd-specific features. Its frontend is an Imagenet-
pretrained thirteen-layer-VGG-16 [19] and backend is
composed of 6 dilated convolution layers that aim to
increase receptive ficlds as well as capture more contex-
tual information. We obtain comparable MAE and MSE
compared with current methods [5] [11]. As it is shown
in Table. VII, the DFG is a strong extractor to generate
density features, which are of vital importance to generate
density map with high quality.

« Effectiveness of CSM. The scale information, which is
an important factor for crowd counting, is always insuffi-
ciently explored and thus cannot bring well-estimated re-
sults. So the CSM is proposed to capture scale variations
among crowds. From Table. VII, we observe that after
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Fig. 8. Contrast of model parameters and the MAE on the ShanghaiTech [3]
part A. Our architecture makes a deal with the two targets and surpasses the
state-of-the-art methods without much cost of parameters.

adapting the CSM to the network, we achieve superior
results on the UCF_CC_50 [13] dataset and 1.3 lower
MAE on the ShanghaiTech part A [3] (as is shown in
Table. VII). This is a strong support for the notion, that
convolution layers with different kernel size have the
ability to ease scale variations.

o Effectiveness of LRM. Considering that the estimated
density map may be too rough in certain subregions and
thus cause huge estimation errors compared to sparse
regions, we deploy the LRM into network. After applied
the LRM, we obtain another 7.5 lower MAE on the
UCF_CC_50 [13], 1.3 lower MAE on the ShanghaiTech
part A [3]. The superior results prove that our proposed
LRM is useful in refining density maps. In Fig. 5, we also
provide a set of images to demonstrate the effects after
each refinement. We observe that after each refinement,
the corresponding count is closer to the ground truth.

« Effectiveness of our architecture. As it is shown in
Fig. 8, we make an “accuracy-size” trade-off. We try to
steer a middle course between the quality of the gen-
erated density map and the parameters that costs. More
specifically, the MCNN [3] achieves the state-of-the-art
before 2017 at the cost of only 0.13 million parameters,
which is quite an effective framework. However, it is
not satisfying when facing congested scenes. The model
size determines its ability to process complicated scenes
to a certain extent. Another extreme is that the CP-
CNN [6] designs a very complicated network which is
composed of four sub-networks, i.e. the Global Context
Estimator (GCE), the Local Context Estimator (LCE), the
Density Map Estimator (DMP) and the Fusion-CNN (F-
CNN). It also achieves state-of-the-art at the heavy cost
of model size and computer resources. In comparison,
our architecture makes a deal with these two targets and
surpasses the state-of-the-art methods without much cost
of parameters.
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V. CONCLUSIONS

In this paper, we address the scale variations and density
map estimation in crowd counting task by mining the scale
information and refining the density map to re-estimate a more
accurate result. Our architecture consists of 3 components: the
DFG to generate crowd-specific representations for images,
the CSM to incorporate multi-scale context information into
density map estimation, and the LRM to refine the density
map step by step. Due to the novel architecture, we obtain
best results on certain benchmarks.

To the best of our knowledge, the random operations that
LRM used may not be the best strategy to select subregions
with higher estimation errors that needed to be re-estimated.
Therefore, we will replace these operations with more targeted
ways in order to focus on really “urgent subregions” in the
future.
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