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Adaptive Feature Learning for Unbiased Scene
Graph Generation

Jiarui Yang, Chuan Wang, Liang Yang, Yuchen Jiang, Angelina Cao

Abstract—Scene Graph Generation (SGG) aims to detect all
objects and identify their pairwise relationships in the scene.
Recently, tremendous progress has been made in exploring
better context relationship representations. Previous work mainly
focuses on contextual information aggregation and uses de-
biasing strategies on samples to eliminate the preference for
head predicates. However, there remain challenges caused by
indeterminate feature training. Overlooking the label confusion
problem in feature training easily results in a messy feature
distribution among the confused categories, thereby affecting the
prediction of predicates. To alleviate the aforementioned problem,
in this paper, we focus on enhancing predicate representation
learning. Firstly, we propose a novel Adaptive Message Passing
(AMP) network to dynamically conduct information propagation
among neighbors. AMP provides discriminating representations
for neighbor nodes under the view of de-noising and adaptive ag-
gregation. Furthermore, we construct a feature-assisted training
paradigm alongside the predicate classification branch, guiding
predicate feature learning to the corresponding feature space.
Moreover, to alleviate biased prediction caused by the long-tailed
class distribution and the interference of confused labels, we
design a Bi-level Curriculum learning scheme (BiC). The BiC
separately considers the training from the feature learning and
de-biasing levels, preserving discriminating representations of
different predicates while resisting biased predictions. Results on
multiple SGG datasets show that our proposed method AMP-
BiC has superior comprehensive performance, demonstrating its
effectiveness.

Index Terms—Unbiased Scene Graph Generation, Adaptive
Message Passing, Bi-Level Unbiased Training, and Feature En-
hancement.
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Fig. 1. Scattered distribution of predicate representations caused by label
confusion. (a) Image with ground-truth object bounding boxes and labels.
(b) Left: Confused SG generated by Motifs [1] (colored with purple) and
GT (colored with blue). Right: examples explain the label confusion that
similar scenes have different labels. (c) Feature distribution with t-SNE.
Tangled distribution with inseparable semantic-similar predicates (left) and
distinguishable representations (right, generated by the proposed AMP-BiC).

CENE Graph (SG) is a graphical formulation including all

of the objects and their pairwise relationships in the scene,
defining a comprehensive and multi-level scene understanding.
An interaction relationship in SG is represented by a triplet
as <Subject, Predicate, Object>, and all relationships are
formulated as a graph structure to describe the visual scene.
The generated SG provides not only visual context but also
interaction knowledge, thus benefiting multiple visual tasks
including VQA [2, 3], image retrieval [4-6], and image
captioning [7-10].

Despite the promise of graph-level scene perception, the
primary challenge in SGG remains the development of ef-
fective feature learning. It aims to aggregate and generate
more representative predicate features, achieving accurate and
insightful scene graph understanding. To conduct informa-
tion aggregation, recent work [11-18] has explored various
message passing networks to effectively capture neighboring
and global information. With the fact that some predicate
categories hold few samples, some model-agnostic unbiased
prediction methods [19-23] have been proposed to boost the
performance of tail predicates. However, these approaches
overlook the label confusion problem inherent in scene graph
datasets, which appears between general (e.g. “on” and “in”
and specific (e.g. “mounted on” and “painted on”) predicates.
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“wheel-bike” have different annotations in similar scenes, i.e.,
“mounted on” in Fig. 1 (a) and “on” in the image from the
database.

Under the label confusion problem, the aggregation of in-
formation between nodes inevitably suffers severe interference
coming from noise. For similar scenes, the model struggles
to provide a clear prediction, leading to a messy feature
distribution among all confused categories without distinction.
As shown in Fig. 1 (c), the messy feature distribution occurs
not only between head and tail predicates (e.g. “on” and
“painted on”) but also among tail predicates (e.g. “mounted
on” and “painted on”). Although unbiased prediction methods
pay more attention to the training weight or time for tail
predicates, they still fail to address the issue of messy features
for confused predicates during the supervised training process.
Other work [24, 25] uses label correction, which transfers
noisy ground-truth (general) predicates to high-quality (spe-
cific) ones, to alleviate label confusion. However, this direct
modification requires complex manual design, introducing
more noise and label uncertainty.

Based on the aforementioned considerations, in this paper,
we provide an effective and general solution, termed AMP-
BiC, from the view of feature learning for complex scene
graph understanding. AMP-BiC simultaneously achieves both
the discriminated information propagation and aggregation
during message passing and the de-confusion and de-bias
during training. Specifically, we first design an Adaptive
Message Passing (AMP) network, which aims to dynami-
cally conduct information propagation and aggregation among
neighbors. The AMP network is formulated as a GNN-based
graph de-noising process, consisting of noise separation and
residual reinforcement modules. The noise separation module
constructs confidence-guided attention to adaptively suppress
noisy nodes and aggregate valid neighbor information. The
residual reinforcement module introduces a weighted residual
connection between the initial and the aggregated features,
thus conducting the aggregation via adaptively controlling
the aggregation weight. The proposed AMP network simul-
taneously achieves smoothing noisy nodes and preserving the
discriminative features.

Then, we design a feature-assisted training paradigm aiming
to preserve the distinguishability of predicate representations.
Since there are hardly direct constraints on predicate features
for a classifier-alone scheme, we strip off a predicate fea-
ture training branch along with the predicate classification
branch. The feature training branch is incorporated with a
predicate prototype-based contrastive learning, thus forcing
learned predicate representations to be pulled toward their
corresponding prototypes, making representations separable.

Based on the designed feature-assisted training paradigm,
we further design a Bi-level Curriculum (BiC) learning strat-
egy to simultaneously achieve de-confusing and de-biasing.
BiC divides the entire training process into two levels: feature-
level and predicate level. At the feature level, we bring in
a curriculum coefficient that continuously controls the loss
weights of the feature learning branch (large — small) and
the classifier learning branch (small — large) along with
training. At the predicate level, we introduce a curriculum

coefficient array, whose element represents the weight of a
predicate corresponding to its sample frequency and varies
throughout the training. That is, for head predicates: zero
— small, whereas for tail predicates: large — larger. By
linking these two levels, as training starts, feature training
(feature-level) and tail predicate learning (predicate-level) are
implemented with large weights. So confusing scenes marked
with head predicates hardly interfere with tail predicates’
learning. As the training proceeds, the feature training of the
tail predicates gradually reaches the concave point. Thus, grad-
ually increasing the weights of head predicates improves their
corresponding performance meanwhile having little impact on
the performance of tail predicates, thereby solving both the
label confusion and unbiased prediction problems.
The main contributions are summarized as follows:

o We propose an Adaptive Message Passing (AMP) net-
work to dynamically propagate and aggregate neighbor
and initial features between entities and predicates, which
effectively conducts graph de-noising thus keeping fea-
tures representative in complex scene graphs.

o We design a predicate feature-assisted training paradigm
incorporated with prototype-based contrastive learning to
directly perform the discriminating feature learning.

e A novel Bi-level Curriculum (BiC) learning scheme is
presented, which has the strong ability to simultaneously
solve intertwined label confusion and biased learning.

o We achieve comprehensive performance superiority on
multiple SGG datasets, proving that better feature rep-
resentations significantly improve the performance of
predicate classification.

II. RELATED WORK

Message Passing in Scene Graph Generation. SGG aims to
use a comprehension graph structure to represent a scene im-
age. Early works pay more attention to exploring different net-
works, such as GNN [26-29], CRF [30], and RNN/LSTM [1,
31], to model the message passing and aggregation mech-
anisms between the entities and predicates. Recently, more
researchers have considered contextual information. [11, 12]
constrain the rationality of the distribution of the scene graph
structure by introducing a global energy value. [13, 32]
capture better global contextual information and dependencies
through Transformer [33]. [14, 15, 18] delve deep into the
attributes of nodes on a graph-based network and fully utilize
their contextual information to achieve better feature represen-
tations. However, they ignore the differences and complexity
of the scenes. Continuous fusion easily makes the representa-
tions between nodes more similar, thus resulting in an over-
smoothing problem [34]. HL-Net [16] is the first work to
consider the heterophily in the scene graph. It allows the aggre-
gated weights and teleport probability to be negative (passing
the high-frequency signals), and conducts the predicate mes-
sage passing similar to APPNP [35]. HL-Net [16] successfully
preserves the specificity of node features to a certain extent.
However, differentiating the sign of aggregation coefficients
based on object category may not handle the propagation of
confused object pairs. Having two objects or predicates of the
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same category does little to help in identifying relationships.
In this paper, we argue that the ultimate purpose of message
passing is to make features discriminating for classification.
Enhancing node discrimination during contextual aggregation
is not a good choice due to the widespread noise. Being
different from previous work, we propose to remove the noise
in the scene graph and aggregate in-context information from
relevant nodes as much as possible. Additionally, we introduce
an adaptive residual aggregation mechanism, which maintains
node discrimination by adaptively adjusting the aggregated
weight of its clean feature.
Long-tailed Distribution in Scene Graph Generation. In
the long-tailed class distribution, it is difficult to handle tail
predicates without an effective unbiased method. [31, 36]
claim using the mean Recall evaluation metric and [19]
proposes the first solution for unbiased SGG model prediction.
Recent works mainly utilize re-sample [15, 20, 37, 38] or
re-weight [22, 23, 39, 40] with some auxiliary means like
predicate correlation learning [22, 40], and group learning [20]
to alleviate biased prediction. PCPL [40] and PCL [22] utilize
the correlations between predicates obtained during training to
encourage the network to predict more informative predicates.
GCL [20] used a group re-sampling strategy, achieving un-
biased prediction by giving more average training time for
tail predicates. Following this strategy, MEET [21] makes
classifiers among different groups mutually exclusive, thereby
effectively preventing the performance degradation of the head
predicates. However, these methods ignore the problem of
label confusion, which hurts the comprehensive performance.
NARE [41] first proposes the concept of implicit and
explicit predicates in SGG and points out that many explicit
annotations can be labeled as implicit annotations, i.e., label
confusion. It first trains on implicit predicates and then refines
the labels of explicit predicates. However, this method is
complex and not general, once the types of predicates become
numerous, like GQA-LT [42], it is difficult to distinguish them
manually. NICE [24] tackles the label confusion problem more
aggressively. It takes noisy ground truth labels into account
and achieves unbiased prediction by correcting noisy labels.
This approach requires multiple steps of re-training, which is
cumbersome and has limited applications. I[ETrans [25] is the
most recent work that considers the label confusion problem.
It transfers the general predicates to informative ones based
on the confusion matrix. In this paper, we propose a novel
method to alleviate label confusion at the feature learning
level. We first design a feature-assisted training paradigm for
directly training distinctive features for samples with different
categories. Based on this paradigm, we further design a bi-
level curriculum learning scheme, which is quite simple and
effective, to enhance the feature training of tail predicates and
reduce the interference of confusing labels and data bias, thus
achieving de-confusion and de-biasing simultaneously.

III. APPROACH

The task of scene graph generation is to parse an image [/
into a scene graph G = {Esup, P, Eopj }» Where Egyp and Eop;
represent the set of subject and object entities, respectively.

P denotes the set of predicates for all entity pairs. Typically,
a two-stage SGG model is implemented as follows. The first
stage plays the role of entity detection and detects the entities
through an object detector (e.g., Faster R-CNN [43]). It outputs
three key variables of objects, including initial visual feature
v € R% X1 spatial feature s € R%*! of object bounding box,
and category vector 1. € R% 1. Given an entity pair (e;, ¢;),
the initial entity feature e;,;; € Re*1and predicate feature
Pinit € R%*1 are generated as,

(€init)i = fe(vi @ si), (1
(Pinit)isj = fu(Wiz) + fo((€init)i © (€init);),

where @ is a concatenate operation and u;; denotes the
convolutional feature of the union region covering entities e;
and ¢;. fe, f, and f, are three fully-connected operations. The
second stage identifies the relationships that exist between all
entity pairs composited from the first stage. Each relationship
is denoted as a triplet <subject entity, predicate, object entity>,
and the predicate 1, € P contains background category that
means no relation.

Overview. In this paper, we stick to the idea that better
features make better classifiers while presenting an effective
and general solution from the feature learning view for com-
plex scene graph understanding, termed AMP-BiC. AMP-BiC
performs feature aggregation within the Adaptive Message
Passing (AMP) network and utilizes the Bi-level Curriculum
(BiC) learning strategy for learning.

Taking initial entity and predicate representations as input,
we first construct two graphs: Entity-to-Entity graph and
Entity-to-Predicate graph. The Entity-to-Entity graph conducts
adaptive message propagation between neighboring nodes and
the initial node, thus ensuring discriminating entity feature rep-
resentations. The Entity-to-Predicate graph subsequently takes
updated entity features as input and adaptively aggregates the
subject and object features to their corresponding predicate
features under a bipartite graph formulation. The adaptive
aggregation in the AMP network is implemented on both
graphs to achieve de-noising and enhancing features during
message passing.

To well-explore discriminating representations of predicates,
a stripped predicate feature training branch is implemented
after the adaptive message passing network. It is deployed
in parallel with the predicate classification and updated by a
contrastive loss function based on predicate prototypes.

Furthermore, the Bi-level Curriculum learning is designed
to simultaneously concatenate the feature-assisted training
paradigm to long-tailed class distribution. By dynamically
linking the change curves of the two curriculum coefficients,
the learning of the AMP network simultaneously reduces
interference of confusing labels and achieves bias removal.

In the following, The Adaptive Message Propagation mech-
anism is introduced in Section III-A. The feature-assisted
training paradigm is illustrated in Section III-B. The Bi-level
Curriculum learning is presented in Section III-C. An overview
is illustrated in Fig. 2.



JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

Adaptive Message Passing Network
T

person

/
i
|
| e chair ” 2z Adaptive Neighbor Aggregation
e -n =
: Pror i | & Attention e[2]o7[.[o8 :
; : Doy | B Mechanism elo1| A [ [o0 Adaptive
' woman 2ona i 2 )
' i1 S | Entity Residual
1 G . A .
! Pnoz i) | g | PairsSet ¢, [00[00] - [ A ggregation
: g Confidence Neighbor
| R Estimator Aggregation Matrix ' ' m
1 Proposal : :
1 :
! Generator A
| -
: 1S s is-»
1 )
| @
= iparti .

i E 3 A Pred.l AB"::"::;“ Adaptive
| ] b - gareg Residual

[ O 73 ati
| e Obj.- - Aggregation
| e
E E i 5 Adaptive Neighbor Aggregation
\ A

X S Stages

J Initial Entity Feature @l Refined Entity Feature

(W Initial Predicate Feature @Ml Refined Predicate Feature

Vo

i ) :
-8 } Contrastive Loss ' !
T M | (Feature Loss) ' '
. ' |
¥ n re-welghti E |
' 1 Loss Feature | | o5 Predicate | i E i
i1 Projection | Wt teel i v Lyl ol :
'1 Matrix Mg Body {1 - i
o Head | 1 1 # holding i
i Fpoch © | Epoch R L |
¥ : Pt |
i 1- re-weight| | - i
b classfier m |1 (walking on) Vi 3
- Cross Entropy Loss | ! - ' -
i (Classifier Loss) Pl sitting on i
[ 1 o B !

@ Predicate Prototype Mask Operation

Fig. 2. Overview of the proposed AMP-BiC. The network contains (a) an object detector module to generate relationship proposals, including initial entity
and predicate representations. (b) The AMP network contains Entity-to-Entity and Entity-to-Predicate graphs, aggregating features for entities and predicates
with the adaptive aggregation mechanism including Adaptive Neighbor Aggregation (ANA) and Adaptive Residual Aggregation (ARA). (c) Predicate feature-
assisted training paradigm updated with prototype-based contrastive loss. The bi-level curriculum learning scheme is presented to dynamically adjust loss
weight on the feature level and the predicate level, to alleviate label confusion and bias problems simultaneously.

A. Adaptive Message Passing Network

In this section, we first regard the scene graph message
passing as a graph signal de-noising process and generalize the
paradigm of previous graph-based methods. Then, we propose
a general improvement scheme for this paradigm: Adaptive
Neighbor Aggregation and Adaptive Residual Aggregation.
Lastly, we apply these improvements to the two sequential
graphs (Entity-to-Entity and Entity-to-Predicate) conducting
message passing.

1) Generalization of GNN-based Message Passing: When
generating initial entity proposals, the scene graph defaults
to a directed complete graph. All we need is to conduct
effective propagation and aggregation in the graph, introducing
noise suppression and related information aggregation. The
formulation of the message passing process in SGG can be
written as a general graph signal de-noising [44, 45]:

argmin Ly (X) = A|X — Xini|% + (1 = Mtr(XTLX), (2)
XeRNXD

where X is either entity or predicate features, N is the
number of entities or predicates, and X, is the initial
feature extracted from the object detector. The first term
is the optimization goal, which guides the noisy signal X
to be close to clean signal Xj,;. The second term is the
Laplacian regularization that guides X’s smoothness over the
scene graph G. L is the normalized graph laplacian matrix
and L = I — D"Y/2AD"Y/2. A = I+ A denotes the
adjacency matrix with self-loop and Dis A’s degree matrix.
For simplicity, we set A = D~/2AD~1/2 to represent
normalized adjacency matrix, thus L = I—A. Since the initial
state of the scene graph is a complete graph, the confidence
score [15] or attention mechanism [14, 36] are always used to
obtain the normalized adjacency matrix A.

Setting a stepsize v to 0.5, the update of X is written as:

OL1(Xk)

OXF
= XF = 2K = Xi) + (1= 1= A)x]
= (1 = N)AXF + AXjpi.

Xk+1 :Xk —

Eq. 3 shows a general paradigm for SGG message passing.
For example, in BGNN [15], A = 0; in RU-Net [18], A = %;
in HL-Net [16], A > 1. From this paradigm, we conclude
that the optimization of Eq. 2 is a simple aggregation of
three components including initial(Xj;;), current(self-loop of
A) and neighbor(no self-loop of A) features.
Consideration. Analyzing this paradigm, we argue that this
updated formulation may not be appropriate for complex
scene graph structures. Firstly, the selection of neighbor nodes
(elements in A) should be prudent to avoid over-smoothing
during message passing in GNN. Direct confidence-based
gating may increase the probability of removing valid node
pairs, and a single attention mechanism may aggregate some
unnecessary information. Secondly, fixing the weight (\) for
the initial residual (X;,;;) is not proper. For the condition
that the noise around the node is small, we should aggregate
more neighboring features. For other conditions, since the
node noise may be large, a large weight for initial features
can suppress the impact of noise. As analyzed above, we
improve these two terms of Eq. 2 with an adaptive mechanism,
respectively, realizing feature de-noising and enhancement.

2) Adaptive Neighbor Aggregation (ANA): To effectively
bring information into aggregation, the adjacency matrix A
in Eq. 3 is vital for conducting noise suppression and positive
information aggregation. Therefore, we introduce the Adaptive
Neighbor Aggregation (ANA) module, which is implemented
with a Confidence Estimator (CE) to remove unrelated (low-
confidence) edges and an Attention Mechanism (AM) to
calculate weights for aggregation.
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The Confidence Estimator (CE) module is formulated as a
fully connected structure followed by a gate filter. It suppresses
information flows holding less contribution in the message
propagation. Concretely, for computing the confidence score
of the predicate from the entity e; to the entity e;, we take
visual features v; and v;, spatial features s; and s; as input.
After feature embedding with the fully connected layer, we
use a gate filter to predict the confidences of predicates. The
operation is described as:

Cisj=fe(VidV;®s; Bsj), 4

where f. is the CE operation. Then predicates holding low
confidence are masked thereby preventing message aggrega-
tion for unrelated nodes.

For information aggregation in the graph, each entity node
provides varying contributions to its neighbors, under dif-
ferent conditions including location, semantic and realistic
similarities, etc. Therefore, using the same weight to aggre-
gate surrounding information may hold back the aggregation
effectiveness. For example, two entities that are closer together
often need to aggregate more information than those farther
apart. To this end, we follow the concept of the attention mech-
anism [33] and present a multi-head self-attention mechanism
to capture the correlation between entities.

Specifically, to construct multiple heads, for the ht" head,
we generate queries Q and keys K; based on the current
layer entity features E € RV*de as:

Q. =EWY, K, =EWE, (5)

where N is the number of entities, Wg, Wf € R¥xde/8 gre
linear projections, and h = 1,2, ..., H denotes the indication
of the head. H is set as 8. To model the correlation between
entities under the h!" head, we construct the attention weight
matrix Aj, € RVXN a:

Qth
NCE

where \/d./8 is a scaling factor. Based on the confidence
ci—; estimated from Eq. 4, we use the threshold p to mask
unrelated edges. By averaging the attention weights from all
heads, we obtain the final attention map:

1 &
A:E;Ah. (7)

Compared with the normalized adjacency matrix A depicted
in Eq. 3, the attention map A not only considers the rationality
of the existence of the relationship but also aggregates more
valid contextual information.

3) Adaptive Residual Aggregation (ARA): Then we im-
prove the first term in Eq. 2. We argue that the fixed weight
for residual is not proper due to the complexity of the scene
graph. Consider the Frobenius norm in Eq. 2, the derivative
of each element is independent due to V,, [|X|[|7 = 2z;;.
For adaptive residuals, we consider using the /5 ;-norm since
ly1 is "sample-specific" [46]. 5 1-norm encourages the rows
of X to be zero, i.e., ; — (Tinit); — 0, which also meets
our optimization objective, and it allows each column to be

A, = softmax(

7maSk = {(Za.])‘cl—n < p})7 (6)

non-zero. To the end, we rewrite Eq. 2, replacing F-norm with
l 1-norm:

argmin Lo (X) =X — Xinicl[2,1
X RN xD (8)

+ (1 = Ntr(XT(1 - A)X).

However, we found that h(X) = A|X — Xipit||2,1 is actually
locally non-differentiable since V., h(X) = /\%
has an undefined derivative when z; — (2,5¢); = 0. To this
end, we optimize it by proximal gradient descent [47]. First
conducting gradient descent on the second term of Eq. 8 with

stepsize v = 0.5:
Y =XF — (1 = V) Vir((XF)T(I - A)XF)

s 9
= AX* + (1 - N)AX*. ©

Then the optimization of Eq. 8 is transformed into a proximal
mapping process:

Xk = prox, ., (YH)

1 (10)
= argmin — || X — Yk||§ + AX = Xini|l2,1-
XcRNxD 2’7

Setting Z = X — Xjnit, we further transform Eq. 10 into:
XEH = Xigie + arg min([|Z — (Y* = Xinid) |15 + Al|Z[|2,1)-
Z
(11)

The second term of Eq. 11 is a ¢5 ;-norm regularized least
squares regression problem [48] as its solution [46, 49]:
Y — (Xinit)i

A
Zi = —+—T max(||[YF — (Xinit)ill2 — =,0). (12)
I = (Kiniill2 2

At last, we obtain the message passing form of Eq. 8:

XA = (Xinio)i + BOYE — (Xinit)s)

— (1 B)(Kum)s £ ANXE + (1 - N)(AXE)),

where § = max(l — 2HY5_(+1)”2,0)

The second term of the Eq. 13 performs adaptive neighbor
aggregation, in which the normalized adjacency matrix A s
equal to A shown in Eq. 7. Compared with Eq. 3, 8 in
this formula embodies sample-specific residual aggregation.
Except for the anti-over-smoothing effect of the residual
module, 5 can also distinguish noise in a complex scene
graph environment. Features with noisy nodes will lead Y* to
be elusive during neighbor features aggregation. In this case,
[ is at a high value, which means low weight for residual
connection, thus the noise is gradually smoothed. In contrast,
normal features mean high weight for residual connection to
tackle the over-smoothing problem and retain more accurate
and clear information.

4) Overall Message Passing Flow: After discussing the
general message aggregation method, we describe the overall
message passing on two graphs including Entity-to-Entity and
Entity-to-Predicate, as shown in Fig. 2.

The Entity-to-Entity graph first evaluates the confidence
score for each relationship proposal and calculates the nor-
malized adjacency matrix A¥ by ANA module. Then we
adopt the Eq. 13 to adaptively aggregate neighbor features
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and initial features, which attenuates the effects of noise while
maintaining node differentiation:

— B)(emin)i + B8(Nef + (1

The Entity-to-Predicate graph is constructed as a bipartite
graph following previous methods [14-16, 32]. It treats the
subject node and the object node as different sources when
aggregating features to predicate:

el =1 —\)(Aker);). (14

(p:ggr)i—?j = Me—’P(me(éK ©® pf—>])~K

me(e S5 pz—>J)~K)'

s is the stage indication during the message passing and
K is the number of graph layers in the current stage.
M., € R?*d» denotes the projection matrix mapping from
entity feature space to predicate feature space. f,, is a gate
mechanism that contains a two-layer MLP and a tanh output
activation function layer. ¢ means concatenate operation. €
denotes the refined entity features after Entity-to-Entity graph.
We utilize the subtraction operation to distinguish the subject
and the object. Again, we use Eq. 13 to perform message
passing:

5)

s+1
pl—)j

=(1- 5)(Pinn)z‘—>j
+ B(Apf—m + (1 - )‘)(nggr)i—)j)'

Noted that in the Entity-to-Predicate graph, we only perform
message aggregation on edges whose confidence score ¢;_,; >
p. After S stages, we obtain the final predicate features.

(16)

B. Predicate Feature-Assisted Training Paradigm

Considering that predicate learning always suffers from
confused labeling, learned representations of predicates may
be inclined to be indistinguishable as the training progressed
(Fig. 1(c) left), resulting in confused classification results (Fig.
1(b) left). To alleviate the cluttered feature distribution, a
straightforward idea is to directly constrain the learning of
features. Ideally, different predicates should have an obvious
dividing line in feature space. To this end, we design a feature-
assisted training paradigm shown in Fig. 2. We construct the
feature learning branch as a stripped network from the pred-
icate classification network. To make the feature distribution
of different predicate categories as scattered as possible, we
introduce the contrastive learning mechanism incorporating the
guidance from predicate prototypes. The proposed prototype-
based contrastive learning loss function aims to pull features

of the same predicate toward their corresponding prototype.

Concretely, we extract the prototype of each predicate from
the pre-trained GloVe [50] with a 300-dimensional feature
vector. The cosine similarity is utilized to measure the dis-
tance between output features from the AMP network and
prototypes. The loss function is defined as:

exp([[Msp, 2 - llagell2/7)
2 e exp(IMyp; ;2 - llasllz/7)

Ly(pi;) = —log )

|| - ||2 represents £*-norm, q,; denotes prototypes, and My is
a projection matrix mapping from R to R3%. B is the set
of the ground truth predicates that appear in a mini-batch. 7
is a scalar temperature parameter set with 0.1.

C. Bi-Level Curriculum Learning Strategy

The long-tailed distribution of predicates has been ubiqui-
tous throughout the SGG datasets (e.g. VG [51], GQA [42]).
Although the proposed feature-assisted training paradigm re-
lieves the cluttered feature distribution, biased prediction still
brings under-trained situations for tail predicates and cannot
solve label confusion. Therefore, it is desperate to adequately
train features of the tail predicates, while reducing the impact
of confusing labels. In this section, we present a novel solution
that introduces the bi-level curriculum learning scheme.

The bi-level curriculum learning scheme is conducted as:
when training starts, the model emphasizes the training of fea-
tures and emphatically learns better features for tail predicates;
subsequently, the model gradually increases the loss weights
of head predicates and emphasizes the training of the classifier.
In this way, features of tail predicates achieve to be close to the
"concave point" due to the double reinforcement. Meanwhile,
the interference label is double-weakened and hardly interferes
with the training of the tail predicates.

Concretely, in the bi-level curriculum learning, the first level
considers joint learning of features and classifiers (feature-
level). In the initial training stage, since learned features are
inaccurate, it makes little contribution to training the classifier.
Therefore, the feature training branch occupies a larger weight.
As the training goes on, feature representations have been
enough learned, so we gradually reduce the weight of this part
and increase the weight of the classifier. The second level is
from the perspective of the long-tailed distribution (predicate-
level). At this level, we separately consider the importance of
predicates based on their sample size. To be specific, we set
the initial loss weights of head-body-tail predicates [15] to
w(©). The growth rate of the loss weight of each predicate is
related to the number of samples in the train set:

pai
_til, l is a head predicate
© Phead
0 L
= Pai . .
i —tail | l is a body predicate
Prody (18)
1.0, lis a tail predicate
() _ @ " B
w,  =w; + ——4 5
! ! nmax P)l

}f tail represents the ratio of the average occurrence frequency
of tail predicates and head predicates. It indicates the initial
weight of the head predicates during the training process, with
the same rule applying to £ Frk. Py denotes the probability of
occurrence of predicate [, and 6 is a benchmark predicate (e.g.
the most frequent tail predicate). (0) and (n) is the first epoch
(initial weight) and n'" epoch during training, respectively.
The maximal epoch number is set with 15 in the experiment.
(In addition, we always set the weight of the background
category to 1.) Different from the previous static re-weighting,
our method is dynamic.

From the view of combining two levels, predicate-level is
successfully linked to feature-level. The feature representations
of tail predicates are double-emphasized at the beginning of
training. At this stage, the long-tail distribution seems to disap-
pear, since only the tail predicates are involved during training.
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TABLE I

COMPREHENSIVE COMPARISON ON VG150 WITH STATE-OF-THE-ART UNBIASED METHODS BASED ON RESNEXT-101-FPN BACKBONE.  DENOTES
RESULTS REPRODUCED WITH OUR CODE. THE BEST AND SECOND-BEST ARE HIGHLIGHTED IN BOLD AND UNDERLINED, RESPECTIVELY.

Baseline Models ‘ De-bias Methods ‘ PredCls SGCls SGDet
\ R@50/100 mR@50/100 hR@50/ 100 \ R@50/100 mR@50/100 hR@50/ 100 \ R@50/100 mR@50/100 hR@50/ 100
IM-SGG [12] 70.8 / 71.7 24.9/28.0 36.8/40.3 43417442 13.1/14.7 20.1/22.1 2937322 9.8/11.8 1477173
Seq2Seq-RL [13] 66.4 / 68.5 26.1/30.5 3757422 38.3/39.0 147/ 16.2 21.2/22.7 30.9 /344 9.6/12.1 14.6 /179
Baseline 66.0 / 67.9 14.6 / 15.8 23917256 39.1/39.9 8.0/85 133/ 14.0 32.1/36.9 551768 94/115
TDE [19] 46.2 /514 25.5/29.1 3291/372 27.7129.9 13.1/ 149 17.8 /199 16.9 /203 82/98 11.0/13.2
PCL [22] 55.0/57.3 33.6 /358 41.71744.1 342 /352 18.2/19.1 23.8 /248 29.0/33.4 142/ 16.6 19.1/22.2
NICE [24] 55.1/57.2 29917323 38.8/41.3 33.1/34.0 16.6 / 17.9 22.1/235 27.8 /318 122/ 14.4 17.0 7 19.8
GCL [20] 4271444 36.1 /382 39.1/41.1 26.1/27.1 20.8/21.8 232/242 18.4/22.0 16.8 /19.3 17.6 / 20.6
Motifs [1] HML [52] 47.11749.1 36.3 /38.7 41.0/433 26.1/274 20.8 /22.1 232 /245 17.6 / 21.1 14.6 / 17.3 16.0 / 19.0
DeC [53] 59.2 1 60.6 18.3/20.3 28.0 /30.4 34.6 /359 11.8/12.3 17.6 / 18.3 27.7 /308 9.0/ 104 13.6 / 15.5
IETrans [25] 54.7156.7 30.9/33.6 3957422 325/334 16.8 /179 22217233 26.4 / 30.6 12.4 /149 16.9 / 20.0
MEET |[21] 674 /17217 2537335 36.8/459 4057432 19.0 /23.7 25.9 / 30.6 27917333 85/11.8 13.0/17.4
CFA [54] 54.1/56.6 35.7/382 43.0/45.6 34.9/36.1 17.0/ 18.4 22.8/243 27.4/31.8 132 /155 17.8 /20.8
BiCy 47.4149.5 3747402 41.8 /444 33.0/34.4 19.0 /21.0 24.1/26.1 24.3 /283 1727199 20.1/23.3
Baseline 65.4 /672 16.7/18.2 26.6 / 28.6 46.7 /1 47.6 11.8 /125 18.8/19.8 31.9/36.2 74187 12.0/ 14.0
TDE [19] 47217516 25417287 33.0/36.9 2541279 122/ 14.0 16.5/18.6 1947232 93/11.1 12.6 / 15.0
PCL [22] 53.4/56.2 32.9/357 40.7 1 43.7 38.4 /395 2527263 30.4/31.6 27.6 /319 148 /174 19.3/22.5
NICE [24] 55.0/56.9 30.7 /33.0 39.4 /418 37.8/39.0 19.9/21.3 26.1/27.6 27.0 / 30.8 119/ 14.1 16.5/19.3
VCTree [31] GCL [20] 40.7 1 42.7 37.1/39.1 38.8/40.8 27.7128.17 22.51/235 24.8 /258 17.4 120.7 1527175 16.2/19.0
- HML [52] 47.0 /488 36.9/39.2 41317435 27.0/284 25.0/26.8 26.0/27.6 17.6 / 21.0 13.7/16.3 153/ 18.4
IETrans [25] 53.0/55.0 3037339 38.6/41.9 329/338 16.5/18.1 22.0/23.6 2547293 11.5/14.0 1587189
MEET [21] 62.0/69.8 25.5/345 36.1/46.1 35.4/39.2 145/ 18.6 20.6 /252 26.4 /312 82/115 12.5/16.8
CFA [54] 5471515 345/372 42.3/452 42417435 19.1/20.8 26.3/28.1 27.1/31.2 13.1/155 17.7120.7
BiCy 56.0 / 58.7 35.3/38.0 43.3 / 46.1 37.2/38.7 27.91729.7 31.9/33.6 22.6 /26.5 16.9 /1 19.7 19.3/ 22.6
Baseline} 65.1/66.8 16.1/17.7 25.8 /28.0 38.4/39.1 9.2/ 10.0 148 /159 31.2/35.6 721784 11.7/13.6
CogTree [55] 38.4/39.7 284 /31.0 32.7 /348 229/234 15.7 /1 16.7 18.6 / 19.5 19.5/21.7 11.1/12.7 14.1/ 16.0
Transformer [33] HML [52] 45.6 /1478 3337359 38.5/41.0 22.5/238 19.1/20.4 20.7 /1 22.0 154/ 18.6 15.0/17.7 152/ 18.1
N IETrans [25] 51.8/53.8 30.8 /34.7 38.6/422 32.6 /335 14.7 7 19.1 22.7/24.3 25.5/29.6 12.5/715.0 16.8/19.9
CFA [54] 59.2/61.5 30.1/33.7 39.9/43.5 36.3/37.3 1577172 21.9/235 27.71/32.1 123/ 14.6 17.0/20.1
BiCt 53.4/56.0 34.6 /372 42.0 / 44.7 33.0/34.0 19.7/21.0 24.7 / 26.0 233/273 16.7 / 19.1 19.5/22.5
AMP Baselinet 64.6 / 67.0 18.4 /20.1 28.6 / 30.9 38.4/39.3 10.8 / 11.6 169/ 179 31.7/35.6 761793 12.3 /147
BiCy 51.7/54.0 38.3/40.8 44.0 / 46.5 30.7 /322 21.8/233 25.5/27.0 22217268 16.6 / 19.2 18.9 /224

Therefore, the model is equivalent to pre-train a model for
tail predicates. Although there are continuous interference
tags involved as the training goes on, it can be treated as a
fine-tuning process and will not cause significant interference
to the performance of tail predicates. Under this setting,
it simultaneously solves the label confusion and unbiased
prediction problem.

With the whole model containing the feature loss and the
classification loss, the overall loss function is written as:

L0 (i) =i (@™ L5 (piss)
+ (1= ) (w Lo(pinsy).

The feature-level curriculum coefficient u}” =1—=n/Nmax
and L. is the standard cross entropy loss for multi-class
classification.

19)

IV. EXPERIMENTS
A. Experimetal Setup

Dataset. We evaluate our proposed AMP-BiC on three
common-used SGG datasets, i.e., Visual Genome (VG) [51],
Open Image (OI) V6 [56], and GQA-LT [42]. For VG,
following previous work [1, 31, 57], we adopt the most
popular pre-processed VG150 including 108k images, the most
frequent 150 object classes, and 50 predicate categories. For
OI V6, we follow the same data pre-processing and evaluation
protocols utilized in [14-16, 18, 58], including 602 object
classes and 30 predicate categories. Furthermore, we also
conduct the experiments on a more challenging dataset GQA-
LT [42]. GQA-LT has more object classes (1703) and predicate
categories (310) with a more extreme long-tailed distribution.

Tasks and Evaluation Metrics. The scene graph generation
is divided into three sub-tasks with the acquisition of objects:
Predicate Classification (PredCls) which takes ground truth
object detection as inputs; Scene Graph Classification (SGCls)
gives ground truth bounding boxes; and Scene Graph Detec-
tion (SGDet) detects the whole scene graph from the scratch.
To estimate the performance, we use Recall@K (R@K), mean
Recall@K (mR@K), and harmonic Recall (hR@K) [25, 59]
as evaluation metrics. The hR@K is defined as the harmonic
mean of R@K and mR@K and effectively reflects the overall
performance of the model. We also report the mR@K on
each long-tail category group followed by [15], including head
(more than 10k), body (0.5k ~ 10k), and tail (less than 0.5k).

Implementation Details: For the object detector selection, we
utilize the pre-trained Faster R-CNN [43] with ResNeXt-101-
FPN [60] and freeze the model parameters during training.
Unlike the most commonly used fine-tuning operation in
recent works, we do not fine-tune the object categories on our
proposed AMP network in SGCls and SGDet tasks. Due to the
annotation sparsity of SGG datasets, we set confidence in a low
threshold (p = 0.1) to just remove some “impossible” edges.
The scale hyper-parameter A for adaptive neighbor aggregation
is set to 0.5. Empirically, the whole message passing network
contains 3 stages (S = 3), and the number of layers of Entity-
to-Entity graph K is set to 3. The model is trained with 15
epochs (e = 15) and divided into three stages: Start (epoch
1), Middle (epoch 8), and End (epoch 15). The initial learning
rate is 1.0 x 10~2 with being decayed by a factor of 10 at
the 9*" epoch and 12t epoch. The batch size is set to be
12 for PredCls and SGCls; and 8 for SGDet, respectively. Our
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TABLE II
COMPREHENSIVE COMPARISON ON VG150 BETWEEN PURE MESSAGE PASSING NETWORK WITH/WITHOUT OUR PROPOSED FEATURE-ASSISTED
TRAINING PARADIGM.  DENOTES RESULTS REPRODUCED WITH OUR CODE. THE BEST IS HIGHLIGHTED IN BOLD.

\ PredCls \ SGCls \ SGDet
Models
| R@50/100 mR@50/100 hR@50/100 | R@50/100 mR@50/100 hR@50/100 | R@50/100 mR@50/100 hR@S0 /100
MSDN [27] 64.6 / 66.6 1597175 2557277 | 384/398 93/9.7 1507156 | 31.9/366 6.1/72 102/ 12.0
VTransE [61] 65.7167.6 1477158 2407256 | 386/394 82/87 135/143 | 29.7/343 50760 8.6/102
GPS-Net [15] 652/ 67.1 1527166 2477266 | 37.8/39.2 85/9.1 139/148 | 31.1/359 67186 11.0/13.9
BGNN{ [15] 65.4 /672 169 /183 269/288 | 383/394  102/108 16.1/17.0 | 30.7/35.7 7.0/89 114 /142
Motifs [1] 66.0 / 67.9 1467158 239/256 | 39.1/39.9 8.0/85 133/140 | 32.1/369 55/68 947115
Motifs+FAT 64.6 1 66.4 1937208 29.7/312 | 37.9/388 9.7/103 154/163 | 31.5/365 791795 12.6 / 15.1
VCTree [31] 65.4 /672 167 /182 2667286 | 46.7/47.6 1187125 1887198 | 31.9/362 74187 120/ 14.0
VCTree+FAT 64.3 1 66.4 199/215 3047325 | 449/458 133/ 14.1 205/21.6 | 30.6/348 9.2/10.6 14.1/162
Transformert [33] | 65.1/66.8 16.1/17.7 258/280 | 384/39.1 9.2/10.0 1487159 | 31.2/356 72184 117/ 13.6
Transformer+FAT | 64.0 / 65.4 1937206 29.7/317 | 383/39.1 105/ 11.2 16.5/174 | 30.6/35.6 8.1/9.7 12.8 /152
AMP 64.6 1 67.0 184 /20.1 28.6/309 | 384/393 108/ 116 169/17.9 | 31.7/356 76793 123/ 14.7
AMP-FAT 65.1/66.6  20.8/226 315/33.7 | 380/39.1 1237132 18.6/19.7 | 31.2/353 9.9/11.1 15.0 / 169
TABLE 1II TABLE 1V

SGDET COMPREHENSIVE COMPARISON ON OPEN IMAGE V6 DATASET.

PREDCLS COMPREHENSIVE COMPARISON ON OPEN IMAGE V6 DATASET.

| Models | mR@s0 R@so | WmAP | SCOTewid
‘ ‘ | rel phr |
ReIDN [58] 3398  73.08 | 32.16 33.39 40.84
o | VCTree [31] 3391 7408 | 34.16 33.11 40.21
S | Motifs [1] 3268 7163 | 2991 31.59 38.93
£ | GPS-Net [14] 3526  74.81 | 32.85 33.98 41.69
HL-Net [16] - 7650 | 3510 34.70 43.20
AMP 3657 7508 | 3503 3594 43.40
o | Unbiased [19] 3547 69.30 | 30.74  32.80 39.27
¢ | SGTR [32] 4261 5991 | 3698 38.73 4208
£ | BGNN+BLS [15] | 4045 7498 | 3351 34.15 42.06
£ | PCL [22] 41.63 7475 | 3465 34.98 42.80
AMP-BiC 4397 7565 | 3497 3587 43.39

model is trained in an end-to-end manner due to the curriculum
learning scheme. All our experiments are conducted using
RTX A5000 GPUs.

B. Performance Comparisons

In this section, we perform a comparison between our

proposed feature-assisted training and the existing state-of-
the-art methods of scene graph generation. We divide the
proposed method into three types: 1) pure adaptive message
passing network (AMP); 2) only use feature-assisted training
paradigm (network-FAT); 3) use bi-level curriculum learning
scheme (network-BiC).
Quantitative analysis on Visual Genome. In Table I,
our proposed AMP-BiC achieves new state-of-the-art perfor-
mance. Adaptive feature aggregation and training allow our
model to effectively balance the performance of head predi-
cates and tail predicates. While achieving SOTA performance
on the majority of sub-tasks in terms of mR@K, it also
maintains competitive R@K performance.

Table II is a comprehensive comparison between pure mes-
sage passing networks with/without the feature-assisted train-
ing paradigm. Compared with another adaptive-style message
passing network, BGNN [15], AMP shows huge improvement
with average increments of 7.2% and 5.4% in mR@100 and

Models | mR@s50 R@so | WmAP | scorewtd
| | rel phr |

VCTree [31] 4841 9136 | 9513 82.04 90.55

Motifs [1] 4787 9143 | 9512  81.49 90.31

Transformer [33] | 46.86  91.75 | 9547 82.16 90.74

AMP 4853 9195 | 9556 82.37 90.88

AMP-BiC 5469 9135 | 9439 81.20 89.91

hR@100. The results indicate that our model can retain the
original features, thus alleviating the feature smoothing caused
by scene noise and long-tailed distribution, and improving the
prediction accuracy of tail predicates. Furthermore, compared
with four baseline networks (Motifs [1], VCTree [31], Trans-
former [33], and our AMP), the performance of hR@100 is
further improved by 23.2%, 30.1%, 12.8%, and 11.4% after us-
ing feature-assisted training (FAT) paradigm. FAT significantly
improves the performance of mR@100 while maintaining the
R@100 performance. This improvement indirectly proves that
direct training on features can effectively prevent informative
predicates from being disturbed by meaningless head predi-
cates under the effect of long-tailed distribution.

Table I shows the superiority of the bi-level curriculum
learning method compared with the state-of-the-art unbiased
method, like GCL [20], NICE [24], and IETrans [25], under
three common-used baseline networks, VCTree [31], Mo-
tifs [1], and Transformer [33]. BiC achieves superior compre-
hensive performance on most tasks. In particular, compared
with the SOTA model CFA [54], BiC average outperforms
with 0.7%, 12.5%, and 10.7% increment on hR@ 100 across
PredCls, SGCls, and SGDet tasks. The remarkable overall
performance improvement demonstrates that our proposed
BiC strategy effectively differentiates between head and tail
predicates. This ensures a balanced focus for the model and
prevents an undue emphasis on either tail or head predicates,
which could result in a significant decline in performance for
the other component. In addition, we also conduct the BiC
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TABLE V
PREDCLS COMPREHENSIVE COMPARISON ON GQA-LT DATASET. }
DENOTES RESULTS REPRODUCED WITH OUR CODE.

Models ‘ mR@50 /100 R@50/ 100 ‘ Head(16)  Body(46)  Tail(248)
Motifst [1] 2.93/4.38 48.76 / 55.53 36.65 11.72 0.92
Motifs+BiCt 10.01 /11.80  36.93 / 42.69 29.14 28.17 7.65
VCTreet [31] 3.58/5.57 49.13 / 56.17 35.92 14.08 2.03
VCTree+BiCt 9.57 / 11.19 36.11/42.10 29.51 27.82 6.92
Transformery [33] 3.23/4.69 47.14 / 53.86 35.52 11.60 1.42
Transformer+BiCt 10.19 /1225  38.20/ 44.10 28.78 25.00 8.82
AMP} 3.63/4.73 45.04 / 50.91 36.24 13.22 1.12
AMP+BiCY 14.16 / 17.38  37.70 / 43.69 28.22 29.39 14.45

method on our proposed AMP network, which exhibits greater
performance enhancements, especially in PredCls with an
absolute improvement of 1.4% compared with VCTree-BiC.
We attribute the performance improvements to the ability of
the AMP network to effectively aggregate scene information,
thus providing discriminative representations and powerful
classifiers for all predicates. In the three subtasks, the noise
in the scene information increases progressively, i.e., noise:
SGDet > SGCls > PredCls. For the AMP network, less noise
implies better adaptive feature aggregation. Therefore, in terms
of performance improvement, PredCls > SGCls > SGDet is
consistent with our experimental results.

Quantitative analysis on Open Image V6. We further
verify the generalizability of our proposed method on OI
V6, which has better annotation quality compared with the
Visual Genome. Following [15], we use the mean Recall@50
(mR@50), Recall@50 (R@50), weighted mean AP of re-
lationships (wmAPrel), and weighted mean AP of phrase
(wmAPphr) as evaluation metrics. Following standard eval-
uation metrics of Open Images, the weight metric score,tq is
computed as: scoreyg = 0.2 x RQ50 + 0.4 X wmAP,q +
0.4 x wmAPphT.

As shown in Tables III and IV, AMP and AMP-BiC both
achieve superior performance on mR@50 and score,q. On
the SGDet sub-task, compared with biased methods [1, 14, 16,
31, 58], AMP obtains the best mR@50 and score,,:q results.
When BiC is adopted, mR@50 has a huge improvement,
and score,q still achieves the best performance compared
with unbiased methods [15, 19, 22, 32]. On the PredCls sub-
task, AMP shows the best overall performance compared with
the three baseline models, and AMP-BiC shows significant
improvement in mR@50. The results further demonstrate that
our proposed feature-enhancement method has good general-
ization, both on message passing and unbiased prediction.
Quantitative analysis on GQA-LT. GQA-LT is a more
challenging dataset due to its huge number of entity and
predicate categories and extreme long-tail distribution. Com-
pared with the VG150, GQA-LT is more fine-grained with
dense relationship labeling. Therefore, GQA-LT inevitably
has a more serious label confusion problem. For example,
“parked alongside"(52), “parked along"(65), “parked at"(84),
“parked beside"(44), “parked in"(281), “parked on"(855) are
similar predicates. Although "alongside’ and ’beside’ represent
different states of ’parked’, human always prefers a more
general expression ’on/in’, disturbing the model to predict

9
TABLE VI
ABLATION STUDY OF THE MODEL COMPONENTS.

Module ‘ PredCls ‘ SGCls ‘ SGDet
ANA ARA FAT BiC| R/mR/HR@100 | R/mR/MR@100 | R/mR/AhR@100

Baseline 67.4/17.9/283 | 39.1/ 9.8/157 | 36.6/ 79/13.0
v 67.5/19.4/30.1 | 39.2/10.7/168 | 358/ 8.8/ 14.1
v v 67.0/20.1/30.9 | 39.3/11.6/179 | 356/ 9.3/ 147
v vV 66.6/22.6/33.7 | 39.1/132/19.7 | 353/ 11.1/16.9
Vv V¥ | 540/408/465 | 32.2/233/27.0 | 268/19.2/ 224

AMP-FAT mmm AMP-BiC

Fig. 3. The performance of several predicate classes on Recall@100. All
selected predicates are semantically close to “on". Although AMP-BiC drops
for “on", the superior recalls for the others show our effectiveness in enhancing
representation.

more specific results. In addition, almost every image in GQA-
LT has nearly a hundred relation annotations, far more than
VG150. Therefore, GQA-LT is more suitable for testing the
performance of the scene graph generated by the model.

As shown in Table V, after applying the BiC unbiased
method, all baseline methods produce a huge improvement
in body and tail parts with absolute average boosting of
14.94% and 8.09%, and normally, 7.17% drop on the head.
Compared between the three baselines and AMP, we find
that AMP achieves equal or even better Recall@100 per-
formance in different long-tailed parts (head-body-tail) but
shows poor performance on all Recall. The whole Recall
performance depends on the head predicates. Interestingly,
AMP has realized superior Recall performance in the head
part, which implies that AMP produces poor performance on
most frequent predicates but achieves even higher on second-
frequent ones. This evidence supports the capability of our
feature augmentation-based method in alleviating model bias
toward predicting relationships.

C. Ablation Study

We further conduct a detailed ablation study over compo-
nents in our network on VG150. Baseline uses a pure mes-
sage passing network without Adaptive Neighbor Aggregation
(ANA) and Adaptive Residual Aggregation (ARA). As shown
in Table VI, we observe that Adaptive Neighbor Aggregation
averagely improves the performance of the classifier by 4.5%
on both mean Recall and Recall, and it is further improved by
2.5% with Adaptive Residual Aggregation. We attribute these
performance improvements to the well-de-noising capability of
ANA and the anti-over-smoothing function of ARA. Feature-
assisted training paradigm, which continues to improve by
7.3% average, proves the effectiveness of direct training
for features. After further adopting the bi-level curriculum
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Fig. 4. Confusion matrices for predicted results of AMP and AMP-BiC. The horizontal axis lists predicted predicates and the vertical axis represents ground

truth predicates. The selected predicates are semantically close to “on"

in the left two matrices and different from “on" in the right two matrices. Comparing

the first and third matrices demonstrates the existence of label confusion. Comparing the first and second matrices shows the de-confusion ability of BiC.

TABLE VII
PERFORMANCE ON DIFFERENT SOLUTIONS FOR UNBIASED PREDICTION.

Method |  PredCls | SGCls | SGDet
| mR@50/100 | mR@50/100 | mR@50/100
Re-sample 30.2 /343 17.0/19.3 1337157
Re-weight 34.3/3638 19.1/21.1 14.7/17.3
Curriculum 36.8 /384 19.5/21.9 1537179
BiC 3837408 21.8/233 16.5/19.2

scheme, which double-emphasizes the feature training of
tail predicates, the representations of tail predicates become
powerful and manifest directly in the huge improvement of
mR@100 with 80.5%. Although bi-level curriculum learning
significantly reduces the performance of R@100, we should
note that the predicate “on" accounts for nearly 30% samples
in the whole dataset, showing its decisive impact on the final
Recall performance. Considering that “on" is an uninformative
predicate that can be replaced by a more precise description
in most cases, high-accuracy of “on" does not make a lot of
sense.

In Fig. 3, we show the R@100 performance of AMP,
AMP-FAT, and AMP-BiC on predicates that are semantically
close to “on". The performance of AMP and AMP-FAT
is mostly contributed by “on", but is less satisfactory on
other informative predicates. In contrast, AMP-BiC has a
huge improvement in almost all other informative predicates,
demonstrating a significant effect on capturing informative
predicates. For example, in a smart home scene, the machine
should have the ability to distinguish between “walking on"
and “standing on". Simply classifying both as “on" will make
intelligent products confusing. Fig. 4 further compares the
confusion matrices of the predicted results of AMP and AMP-
BiC, including predicates semantically similar (left two) and
different (right two) to “on". Compared with the first and third
matrices of AMP, misclassifying semantic-similar predicates
to “on" is easier than misclassifying semantic-different ones.
This phenomenon proves the existence of the label confusion
problem between general (e.g., “on") and specific predicates
(semantically similar to “on"). The label confusion further
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AMP Intra-class Similarity ®88 Intra-class Variance Inter-class Variance
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Fig. 5. Comparison of feature distribution between AMP and AMP-BiC. 13
predicates are selected to visualize, including 3 head predicates (orange), 5
body predicates (blue), and 5 tail predicates (purple). While the inter-class
variance remains stable, BiC significantly increases intra-class similarity and
decreases intra-class variance, resulting in clustered feature distribution.

exacerbates the biased prediction under long-tailed distribu-
tion. Our proposed de-biased method BiC effectively alleviates
this problem. As shown in the second matrix and the fourth
matrix in Fig. 4, predicates that are semantically similar and
different to “on" have roughly the same probability of being
misclassified as “on".

Moreover, we conducted two comparative experiments to
demonstrate the effectiveness of bi-level curriculum learn-
ing. 1) We compare BiC with two conventional unbiased
methods re-sample, re-weight, and the predicate-level only
curriculum scheme (feature-assisted paradigm is not used).
We adopt the BLS algorithm proposed by BGNN [15] for
re-sample and use the weight of each predicate at n,,q;
epoch for re-weight. As shown in Table VII, the BiC achieves
the best performance, which proves the effectiveness of the
feature-assisted paradigm. 2) We quantitatively analyze the
output features of the two different models (AMP and AMP-
BiC). Firstly, we take out all predicted features with their
ground truth predicates and conduct ¢? normalization. Then
we calculate the center vector of each predicate category ¢;.
We use three metrics to evaluate the feature cluster perfor-
mance, intra-class similarity - 3" [|p;l2 - ¢, intra-class
variance 5 > (||pill2 — ¢)?, and inter-class variance
ﬁzﬁél(qﬁl — ¢;)2. C is the number of categories. The



JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

TABLE VIII
PERFORMANCE ON DIFFERENT VALUE CHOICE OF A.

N | PredCls | SGCls | SGDet
‘ R/mR/hR@100 ‘ R/mR/hR@100 ‘ R/mR/hR@100
0.1 53.7/40.1/459 | 325/229/269 | 282/18.0/22.0
0.3 54.4/405/464 | 31.6/239/27.2 | 27.0/18.8/22.2
0.5 54.0/40.8/46.5 | 32.2/233/27.0 | 26.8/19.2/22.4
0.7 53.2/409/46.2 | 31.8/232/26.8 26.5/19.3/22.3
TABLE IX

PERFORMANCE ON DIFFERENT VALUE CHOICE OF p.

p ‘ PredCls

\ R@50 / 100 \ mR@50 / 100 \ hR@50 / 100
0.0 64.5 / 66.9 18.1/19.7 28.3 /30.4
0.1 64.6 / 67.0 18.4/20.1 28.6 / 30.9
0.5 64.2 / 66.6 17.7 1 19.6 27.7 1 30.2
0.9 64.7 / 67.0 18.2/20.0 28.4 /30.7

TABLE X
PERFORMANCE ON DIFFERENT GRAPH LAYERS (K) AND MESSAGE
PASSING STAGES (S).

S_K | PredCls
‘ R/mR/hR@ 100 ‘ Head(7) ‘ Body(21) ‘ Tail(22)
1-1 53.2/39.1/45.1 51.5 35.6 38.5
2-1 55.1/39.6/46.1 54.8 339 40.2
3-1 53.5/40.6 / 46.2 52.6 38.8 38.5
3-2 54.6 /1 40.3 /46.4 54.1 37.2 38.9
3-3 54.0 / 40.8 / 46.5 56.3 30.8 45.3
4-3 5457404 /464 55.8 40.2 35.7
TABLE XI
ANALYSIS ON PROTOTYPE GENERATION METHODS.
Prototype | PredCls | SGCls | SGDet
| R/MRAR@100 | R/MRMR@I00 | R/mRMR@100
GloVe 54.0 / 40.8 / 46.5 32.2/233/27.0 | 26.8/19.2/224
Trainable 56.1/389/459 | 345/222/27.0 | 254/ 189/21.7

results in Fig. 5 show that although the inter-class variance
nearly does not change, the intra-class similarity significantly
increases while the intra-class variance reduces. This means in
a limited space, the distribution of the same predicate features
is more clustered, thus helping the classification.

D. Model Analysis

Variants of our proposed method were investigated for more
insights on VG150: the value of A for the proportion of self-
feature; the number of graph layers in AMP; selection of the
prototypes; and the effectiveness of bi-level curriculum scheme
for solving label confusion problem.

Value of \. We experiment with the value of \. A high value
means the representation of the node comes more from itself
and vice versa. Under the adaptive aggregation mechanism,
the value of A should not have a significant impact on the
performance. The experimental result shown in Table VIII
confirms our conjecture, and we find 0.5 is a better choice.
Value of p. We also experiment with the value of p. A
high value means masking more aggregated nodes by using
spatial and visual information from object-pair. The results
shown in Table IX indicate that the influence of varying p
values on performance is relatively small. This could be due to
the inherent capability of the attention mechanism to perform
adaptive learning. The role of p is merely to further constrain
the scope of attention computation by introducing spatial and
visual information from object-pair.

Number of graph layers. We further explore the effect of
the stages of message passing network (S5) and the layers of
Entity-to-Entity graph (K') on performance. As shown in Table
X, we find that the number of graph layers has less impact on
performance. This is mainly because the AMP is an anti-over-
smoothing method, and the number of layers will not cause
performance degradation. In addition, the BiC training strategy
further ensures the distinction between predicates, and features
will not become similar due to the increase in the number of
layers. 3 stages of message passing network and 3 layers of
Entity-to-Entity graph achieve better performance.

Selection of the prototypes. We evaluate two ways to
select prototypes. The first way is in consideration of the
good generality and expressivity of the pre-trained model.
Directly obtaining the prototype from GloVe [50] is a simple
and effective way. The dimension of a prototype is set as
300. For predicates holding multiple words, the summarization
is conducted. The second way is with the consideration of
updating prototypes along with training. Since SGG is a
specific task, general word vectors may not be suitable as
prototypes. During the training process, weighted updating
with features obtained in the current batch is provided as
q et = quCC’%I{JJJVVTF((Il))TYprl. q; denotes the current pro-
totype for predicate [, and p; denotes the predicate feature
output by the SGG model. COUNT(l) means the number
of samples for a specific predicate that have appeared before
the current mini-batch. My is a projection matrix mapping
from R% to R3°0. The comparison results are shown in Table
XI. We find that the first way has advantages over the second
one in both convenience and performance. We attribute this
phenomenon to unstable training. Since some tail predicates
have few samples, predicate features are easily affected by
interference labels. Consequently, updating prototypes during
training brings in a lot of noise and confusion.

Effectiveness of bi-level curriculum scheme. We discuss how
BiC handles the label confusion problem based on mR@ 100
performance of head, body, and tail predicate categories across
the Start, Middle, and End stages during training. As shown
in Table XII, the performance of the head predicates increases
with the dynamic change of bi-level weights during training.
But the body and tail parts have maintained good performance
and even further improved, especially on fail part. The results
well proved that the proposed bi-level curriculum learning is
more capable of obtaining separated feature distribution for
less dominant predicate categories when trained first. Even
though the weight of the head predicates gradually increases,
it does not hurt the performance of the tail parts. In this way,
the performance of tail classes will be mainly affected by the
richness of training samples rather than category imbalance



JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

TABLE XII
MR @ 100 RESULTS OF head, body, AND tail PREDICATES AT DIFFERENT EPOCHS DURING TRAINING.

- \ PredCls | SGCls | SGDet
Training Stage
| Head Body Tail mR@100 R@100 | Head Body Tail mR@100 R@100 | Head Body Tail mR@100 R@100

Start (15¢ epoch) 5.7 412 452 38.0 10.9 10.0 19.9 18.4 122 17.8 2.4 17.7 16.8 6.4 15.2
Middle (8t epoch) | 53.7 29.8 374 36.5 52.5 28.8 199 209 21.6 28.3 15.9 21.6 17.4 15.9 19.0

End (15" epoch) 56.3 308 453 40.8 54.0 33.8 17.8 254 233 32.2 27.3 166  19.0 19.2 26.8
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Fig. 6. Visualization results of scene graphs generated by Baseline (blue background) and AMP-BiC (green background) on the PredCls task. The quality of
predicted predicates is marked in three levels: red (false), blue (correct), and purple (better).

TABLE XIII
COMPARISON OF MODEL PARAMETERS, TRAINING TIME, AND INFERENCE
SPEED ON SGDET SUB-TASK.

parameters | training time | inference speed
Models ‘ ™) (batch / s) (image / s)
Motifs [1] 368.404 1.176 0.369
VCTree [31] 431.039 5.863 0.595
Transformer [33] 331.899 0.997 0.322
AMP 325.846 1.458 0.355

and label confusion problems.

Analysis on computational complexity. The AMP network
mainly contains two components: ANA and ARA. ANA is
essentially a multi-head self-attention architecture with a mask
condition (constrained by a confidence estimator) to calculate
the adjacency matrix A. The computational complexity of
ANA is O(n?dh + d?), where n,d, h represent the number
of instances, feature dimension, and the number of atten-
tion heads respectively. ARA is a fusion process among
initial, neighbor, and self features. For relationship feature
aggregation, each relationship requires O(d?) computations.
Given that there are O(n?) relationships in total, the overall
computational complexity is O(n?d?). For instance feature
aggregation, the computational complexity is O(n?d). In con-
clusion, the overall computational complexity of the model
is O(n2d2). In addition, we show some quantitative results
in Table XIII, regarding the model’s parameter size, training
time, and inference speed. Our model demonstrates good

computational efficiency.

E. Qualitative Analysis

We visualize several PredCls results in Fig. 6, which show
that our approach relieves the label confusion problem and pre-
dicts semantically informative predicates rather than vaguely
biased ones. Compared with the baseline, our proposed AMP-
BiC obtains accurate, reasonable, and fine-grained results. As
shown in the top row of Fig. 6, we correctly predict the
predicate “on back of" rather than “covering", “behind" rather
than near, which is attributed to the fact that they are distant
from each other in feature space even if semantically similar.
In the second row, the results show that AMP-BiC makes
a more reasonable prediction of <boy, riding, skateboard>
rather than <boy, on, skateboard>, <man, sitting on, chair>
rather than man, on, chair>. This reasonability mainly derives
from the fact that the bi-level curriculum scheme alleviates the
label confusion problem. In the bottom row, the results prove
that AMP-BIC is more capable of predicting fine-grained scene
graphs in complex scenes. Vague head predicates are usually
not predicted by the model when more precise descriptors are
available.

V. CONCLUSION

In this paper, we emphasize the importance of feature
training as better features make better classifiers. We provide
an effective and general solution from the feature learning
view for SGG. We first propose a novel adaptive message
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passing network to adaptively aggregate neighbor features and
initial features. Then, we design a feature-assisted training
paradigm to directly learn more discriminative features. To
adapt this paradigm to the environment of long-tailed class
distribution, we further design a bi-level curriculum learning
scheme, which effectively solves the label confusion and
unbiased prediction simultaneously. The results suggest that
our proposed method contributes to the enhancement of the
comprehensive performance in scene graph generation.

[1]

[4]

[5]

[6]

[7]

[8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

REFERENCES

R. Zellers, M. Yatskar, S. Thomson, and Y. Choi, “Neural motifs:
Scene graph parsing with global context,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2018, pp.
5831-5840.

D. Teney, L. Liu, and A. van Den Hengel, “Graph-structured repre-
sentations for visual question answering,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2017, pp. 1-9.
Z. Zhu, J. Yu, Y. Wang, Y. Sun, Y. Hu, and Q. Wu, “Mucko: Multi-
layer cross-modal knowledge reasoning for fact-based visual question
answering,” in Proceedings of the Twenty-Ninth International Joint
Conference on Artificial Intelligence, 2020, pp. 1097-1103.

J. Johnson, R. Krishna, M. Stark, L.-J. Li, D. Shamma, M. Bernstein,
and L. Fei-Fei, “Image retrieval using scene graphs,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2015, pp. 3668-3678.

S. Wang, R. Wang, Z. Yao, S. Shan, and X. Chen, “Cross-modal scene
graph matching for relationship-aware image-text retrieval,” in Proceed-
ings of the IEEE Winter Conference on Applications of Computer Vision,
2020, pp. 1508-1517.

F. Liu, X. Deng, C. Zou, Y.-K. Lai, K. Chen, R. Zuo, C. Ma, Y.-J.
Liu, and H. Wang, “Scenesketcher-v2: Fine-grained scene-level sketch-
based image retrieval using adaptive gens,” IEEE Transactions on Image
Processing, vol. 31, pp. 3737-3751, 2022.

X. Yang, K. Tang, H. Zhang, and J. Cai, “Auto-encoding scene graphs for
image captioning,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2019, pp. 10 685-10 694.

X. Li and S. Jiang, “Know more say less: Image captioning based on
scene graphs,” IEEE Transactions on Multimedia, vol. 21, no. 8, pp.
2117-2130, 2019.

J. Gu, S. Joty, J. Cai, H. Zhao, X. Yang, and G. Wang, “Unpaired image
captioning via scene graph alignments,” in Proceedings of the IEEE
International Conference on Computer Vision, 2019, pp. 10323-10332.
X. Hua, X. Wang, T. Rui, F. Shao, and D. Wang, “Adversarial reinforce-
ment learning with object-scene relational graph for video captioning,”
IEEE Transactions on Image Processing, vol. 31, pp. 2004-2016, 2022.
M. Suhail, A. Mittal, B. Siddiquie, C. Broaddus, J. Eledath, G. Medioni,
and L. Sigal, “Energy-based learning for scene graph generation,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2021, pp. 1393613 945.

M. Xu, M. Qu, B. Ni, and J. Tang, “Joint modeling of visual objects
and relations for scene graph generation,” Annual Conference on Neural
Information Processing Systems, pp. 7689-7702, 2021.

Y. Lu, H. Rai, J. Chang, B. Knyazev, G. Yu, S. Shekhar, G. W. Taylor,
and M. Volkovs, “Context-aware scene graph generation with seq2seq
transformers,” in Proceedings of the IEEE/CVF International Conference
on Computer Vision, 2021, pp. 15931-15941.

X. Lin, C. Ding, J. Zeng, and D. Tao, “Gps-net: Graph property
sensing network for scene graph generation,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2020,
pp. 3746-3753.

R. Li, S. Zhang, B. Wan, and X. He, “Bipartite graph network with
adaptive message passing for unbiased scene graph generation,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2021, pp. 11109-11119.

X. Lin, C. Ding, Y. Zhan, Z. Li, and D. Tao, “Hl-net: Heterophily
learning network for scene graph generation,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2022,
pp. 19476-19485.

J. Chen, A. Agarwal, S. Abdelkarim, D. Zhu, and M. Elhoseiny,
“Reltransformer: A transformer-based long-tail visual relationship recog-
nition,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2022, pp. 19507-19517.

(18]

[19]

[20]

(21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

[32]

[33]

[34]

(35]

[36]

[37]

(38]

[39]

X. Lin, C. Ding, J. Zhang, Y. Zhan, and D. Tao, “Ru-net: Regularized
unrolling network for scene graph generation,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2022,
pp. 19457-19 466.

K. Tang, Y. Niu, J. Huang, J. Shi, and H. Zhang, “Unbiased scene graph
generation from biased training,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2020, pp. 3716-3725.
X. Dong, T. Gan, X. Song, J. Wu, Y. Cheng, and L. Nie, “Stacked
hybrid-attention and group collaborative learning for unbiased scene
graph generation,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2022, pp. 19427-19436.

G. Sudhakaran, D. S. Dhami, K. Kersting, and S. Roth, “Vision relation
transformer for unbiased scene graph generation,” in Proceedings of
the IEEE/CVF International Conference on Computer Vision, 2023, pp.
21882-21893.

L. Tao, L. Mi, N. Li, X. Cheng, Y. Hu, and Z. Chen, ‘“Predicate
correlation learning for scene graph generation,” IEEE Transactions on
Image Processing, vol. 31, pp. 4173-4185, 2022.

C. Chen, Y. Zhan, B. Yu, L. Liu, Y. Luo, and B. Du, “Resistance training
using prior bias: toward unbiased scene graph generation,” Thirty-Sixth
AAAI Conference on Artificial Intelligence, pp. 212-220, 2022.

L. Li, L. Chen, Y. Huang, Z. Zhang, S. Zhang, and J. Xiao, “The devil is
in the labels: Noisy label correction for robust scene graph generation,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2022, pp. 18 869-18 878.

A. Zhang, Y. Yao, Q. Chen, W. Ji, Z. Liu, M. Sun, and T.-S. Chua, “Fine-
grained scene graph generation with data transfer,” in Proceedings of the
European Conference on Computer Vision, 2022, pp. 409-424.

X. Chang, P. Ren, P. Xu, Z. Li, X. Chen, and A. Hauptmann, “A com-
prehensive survey of scene graphs: Generation and application,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 45,
no. 1, pp. 1-26, 2023.

Y. Li, W. Ouyang, B. Zhou, K. Wang, and X. Wang, “Scene graph
generation from objects, phrases and region captions,” in Proceedings
of the IEEE International Conference on Computer Vision, 2017, pp.
1261-1270.

Y. Li, W. Ouyang, B. Zhou, J. Shi, C. Zhang, and X. Wang, “Factorizable
net: an efficient subgraph-based framework for scene graph generation,”
in Proceedings of the European Conference on Computer Vision, 2018,
pp. 335-351.

M. Qi, W. Li, Z. Yang, Y. Wang, and J. Luo, “Attentive relational
networks for mapping images to scene graphs,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2019,
pp. 3957-3966.

W. Cong, W. Wang, and W.-C. Lee, “Scene graph generation via
conditional random fields,” arXiv preprint arXiv:1811.08075, pp. 1-10,
2018.

K. Tang, H. Zhang, B. Wu, W. Luo, and W. Liu, “Learning to compose
dynamic tree structures for visual contexts,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2019, pp.
6619-6628.

R. Li, S. Zhang, and X. He, “Sgtr: End-to-end scene graph generation
with transformer,” Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 19464-19474, 2022.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,” Annual
Conference on Neural Information Processing Systems, pp. 5998—6008,
2017.

K. Oono and T. Suzuki, “Graph neural networks exponentially lose
expressive power for node classification,” in the Eighth International
Conference on Learning Representations, 2020, pp. 1-37.

J. Klicpera, A. Bojchevski, and S. Giinnemann, “Predict then propa-
gate: Graph neural networks meet personalized pagerank,” The Seventh
International Conference on Learning Representations, pp. 1-15, 2019.
T. Chen, W. Yu, R. Chen, and L. Lin, “Knowledge-embedded routing
network for scene graph generation,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2019, pp.
6163-6171.

Y. Guo, L. Gao, X. Wang, Y. Hu, X. Xu, X. Lu, H. T. Shen, and
J. Song, “From general to specific: Informative scene graph generation
via balance adjustment,” in Proceedings of the IEEE International
Conference on Computer Vision, 2021, pp. 16383-16392.

A. Desai, T.-Y. Wu, S. Tripathi, and N. Vasconcelos, “Learning of
visual relations: The devil is in the tails,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2021, pp.
15404-15413.

A. Zareian, S. Karaman, and S.-F. Chang, “Bridging knowledge graphs



JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]
[48]
[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

(571

[58]

[59]

[60]

[61]

to generate scene graphs,” in Proceedings of the European Conference
on Computer Vision. Springer, 2020, pp. 606-623.

S. Yan, C. Shen, Z. Jin, J. Huang, R. Jiang, Y. Chen, and X.-
S. Hua, “Pcpl: Predicate-correlation perception learning for unbiased
scene graph generation,” in Proceedings of the 28th ACM International
Conference on Multimedia, 2020, pp. 265-273.

A. Goel, B. Fernando, F. Keller, and H. Bilen, “Not all relations
are equal: Mining informative labels for scene graph generation,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2022, pp. 15596-15 606.

S. Abdelkarim, A. Agarwal, P. Achlioptas, J. Chen, J. Huang, B. Li,
K. Church, and M. Elhoseiny, “Exploring long tail visual relationship
recognition with large vocabulary,” in Proceedings of the IEEE Interna-
tional Conference on Computer Vision, 2021, pp. 15921-15930.

S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks,” Annual Conference on
Neural Information Processing Systems, pp. 91-99, 2015.

Y. Ma, X. Liu, T. Zhao, Y. Liu, J. Tang, and N. Shah, “A unified view
on graph neural networks as graph signal denoising,” in Proceedings of
the 30th ACM International Conference on Information & Knowledge
Management, 2021, pp. 1202-1211.

D. 1. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Van-
dergheynst, “The emerging field of signal processing on graphs: Ex-
tending high-dimensional data analysis to networks and other irregular
domains,” IEEE Signal Processing Magazine, vol. 30, no. 3, pp. 83-98,
2013.

G. Liu, Z. Lin, and Y. Yu, “Robust subspace segmentation by low-
rank representation,” in Proceedings of the International Conference on
Machine Learning, 2010, pp. 663—670.

S. Boyd, S. P. Boyd, and L. Vandenberghe, Convex optimization.
Cambridge university press, 2004.

A. Argyriou, T. Evgeniou, and M. Pontil, “Convex multi-task feature
learning,” Machine learning, vol. 73, no. 3, pp. 243-272, 2008.

J. Liu, S. Ji, and J. Ye, “Multi-task feature learning via efficient 12,
1-norm minimization,” arXiv preprint arXiv:1205.2631, pp. 1-10, 2012.
J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors
for word representation,” in Proceedings of the Conference on Empirical
Methods in Natural Language Processing, 2014, pp. 1532-1543.

R. Krishna, Y. Zhu, O. Groth, J. Johnson, K. Hata, J. Kravitz, S. Chen,
Y. Kalantidis, L.-J. Li, D. A. Shamma ef al., “Visual genome: Connecting
language and vision using crowdsourced dense image annotations,”
International Journal of Computer Vision, vol. 123, no. 1, pp. 32-73,
2017.

Y. Deng, Y. Li, Y. Zhang, X. Xiang, J. Wang, J. Chen, and J. Ma,
“Hierarchical memory learning for fine-grained scene graph generation,”
in Proceedings of the European Conference on Computer Vision, 2022,
pp. 266-283.

T. He, L. Gao, J. Song, and Y.-F. Li, “State-aware compositional learning
toward unbiased training for scene graph generation,” IEEE Transactions
on Image Processing, vol. 32, pp. 43-56, 2022.

L. Li, G. Chen, J. Xiao, Y. Yang, C. Wang, and L. Chen, “Compo-
sitional feature augmentation for unbiased scene graph generation,” in
Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2023, pp. 21 685-21 695.

J. Yu, Y. Chai, Y. Wang, Y. Hu, and Q. Wu, “Cogtree: Cognition tree
loss for unbiased scene graph generation,” in Proceedings of the Thirtieth
International Joint Conference on Artificial Intelligence, 2020, pp. 1274—
1280.

A. Kuznetsova, H. Rom, N. Alldrin, J. Uijlings, I. Krasin, J. Pont-Tuset,
S. Kamali, S. Popov, M. Malloci, A. Kolesnikov et al., “The open images
dataset v4,” International Journal of Computer Vision, vol. 128, no. 7,
pp. 1956-1981, 2020.

D. Xu, Y. Zhu, C. B. Choy, and L. Fei-Fei, “Scene graph generation by
iterative message passing,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2017, pp. 5410-5419.

J. Zhang, K. J. Shih, A. Elgammal, A. Tao, and B. Catanzaro, “Graphical
contrastive losses for scene graph parsing,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2019, pp.
11535-11543.

S. Khandelwal and L. Sigal, “Iterative scene graph generation,” in
Annual Conference on Neural Information Processing Systems, 2022,
pp. 1-14.

S. Xie, R. Girshick, P. Dolldr, Z. Tu, and K. He, “Aggregated residual
transformations for deep neural networks,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2017, pp.
1492-1500.

H. Zhang, Z. Kyaw, S.-F. Chang, and T.-S. Chua, “Visual translation

embedding network for visual relation detection,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2017,
pp. 5532-5540.



	Introduction
	Related Work
	Approach
	Adaptive Message Passing Network
	Generalization of GNN-based Message Passing
	Adaptive Neighbor Aggregation (ANA)
	Adaptive Residual Aggregation (ARA)
	Overall Message Passing Flow

	Predicate Feature-Assisted Training Paradigm
	Bi-Level Curriculum Learning Strategy

	Experiments
	Experimetal Setup
	Performance Comparisons
	Ablation Study
	Model Analysis
	Qualitative Analysis

	Conclusion

